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Abstract—This paper describes a face tracking algorithm using
model-based methods and more precisely Active Appearance
Models (AAM). First, an introduction on the background theory
about model-based methods on machine vision is presented, fol-
lowed by a description on statistical shape models and statistical
models of appearance, which are necessary to develop AAMs.
The implementation description, done in a Matlab programming
environment, is presented and its final results.

I. INTRODUCTION

Face detection is a necessary step in many applications,
ranging from content-based image retrieval and video coding,
to intelligent human-computer interfaces, crowd surveillance,
biometric identification, and video conferencing [1] . A wide
range of face detection techniques exist, from simple algo-
rithms to advanced composite high level approaches for pattern
recognition, as the problem has received attention over the last
fifteen years.

For offline processing, the technology has reach a point
where the face detection problem is nearly closed [1] ,
although accurate detection of features such as corners of eyes
or lips is more difficult. However, face detection in real-time
is still an open problem, as the best algorithms are still to
computationally expensive for real-time processing.

Face detection algorithms can be classified into feature-
based and image-based approaches [1] (figure 1). The former
group, feature-based approaches, constitutes the classical de-
tection methodology making explicit usage of face knowledge.
The idea of these approaches is not to consider images as
global but extract features which will lead to characterize
the object, in this case faces. This group can be subdivided
into low-level analysis (edges, grey level, colour, motion,
or generalised measures), feature analysis (feature searching,
or constellation analysis), active shape models (snakes, de-
formable templates, or point distribution models (PDMs)).

The latter group, image-based approaches, address face
detection as a general recognition problem, implicitly incorpo-
rating face knowledge through mapping and training schemes.
It can be sub-classified into linear subspace methods, neural
networks, and statistical approaches.

Active appearance model is a method which connect both
approaches (features-based and images-based methods). In
fact, shapes can be consider as features extracted from the
image and textures as global information from the image.

Figure 1. Face detection approaches

In this paper, an introduction about model-based method
will be given. Then, creation of the statistical shape models
and statistical texture models will be presented. Finally, an
overview of the implementation and results will be given.

II. MODEL-BASED ALGORITHMS

Model-based methods have a characteristic of containing
prior knowledge of the problem that is to be solved. There is
an expected shape of the structures that are to be sought, a
spatial relationship between them and probably a grey-level
appearance expected pattern [2]. All this prior knowledge
helps us pull away from a blind search, because the search
can be restricted to only plausible or valid interpretations of
the image, those that fit the model.

Model-based methods can also be generative models [2].
Using this models and with the prior information about the
object, a realistic image of the target could be built. These
methods also are able to deal with large variability, since they
can be thought as deformable models [2]. They are general in
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Figure 2. Sample face with 58 manually annotated points

the same time specific enough to allow generation of plausible,
valid examples of the class.

Model-based methods are classified as a top-down strategy
to solve a problem. They use a prior model to find a best
estimation in the image; then, a measurement is developed to
evaluate if the target was actually present [2].

This report presents a face tracking system based on active
appearance models (AAM).

A. The IMM Face Database

The database used for this project is the IMM Face
Database, [3], [4], which consists of an annotated set of 240
images of 40 different subjects. The gender distribution is 7
females versus 33 males, all of them which are free of glasses
or accessories. The dataset was downloaded from the provided
link

http : //www.imm.dtu.dk/ ∼ aam/ in [3], [4].

The images were manually annotated with 58 landmarks
located on the eyebrows, eyes, nose, mouth and jaw. Figure
2 shows a sample annotated face. Furthermore, the database
consisted of six different positions of the same subject, the
image types that can be encountered are:

• Full frontal face, neutral expression, diffuse light
• Full frontal face, happy expression, diffuse light
• Face rotated 30 degrees right, neutral expression, diffuse

light
• Face rotated 30 degrees left, neutral expression, diffuse

light
• Full frontal face, neutral expression, spot light added at

the person’s left side
• Full frontal face, arbitrary expression, diffuse light

Sample images taken from the database can are shown in
Figure 3.

Figure 3. Sample Images from Database

III. MODEL GENERATION

This section will describe the theory behind the model
generation. As explain in introduction, AAM does not consider
only shape but also the texture and combine in an linear
way both features. The first part concerns the statistical
shape model whereas the second part is about the statistical
appearance model.

A. Statistical Shape Models

Faces can be well represented by their shapes which are
good features. AAMs will take advantage of this specificity.
Shapes are composed of landmarks which are defined at
specific locations in the face. However, these shapes can
change from one face to another. The aim will be to build a
model which will describe either the typical shape or typical
variability.

In order to build this shape model, the database presented in
section II will be used where each face was annotated with 58
landmarks at specific locations. More explanations are given
in [3], [4].

A shape can be seen as a vector x as:

x = (x1, ..., xn, y1, ..., yn)T (1)

where {(xi, yi)} are ordered coordinate pairs from the ith

landmark.
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1) Align the training dataset: The images were tried to
acquired about the same point of view. Thus, shapes are
misaligned from one to another. Before to create the shape
model, a step which consist to realign all shapes is needed.
Cootes and al. proposed to use the most popular approach
in the literature being Procrustes Analysis [5], [2]. Procrustes
Analysis allows to determine a linear transformation (trans-
lation, reflection, orthogonal rotation, and scaling) between
two shape by minimizing the sum of distances between these
shapes. In order to align the training dataset, one shape will
be consider as reference (it could be the first shape of the
dataset) and all shapes will be aligned on this shape using the
Procrustes Analysis.

2) Modeling shape variation using Principal Component
Analysis: The aim of modeling the shape is to find a param-
eterised model of the form:

x = M(bs) (2)

where bs is a vector of parameters of the shape model.

An effective approach in order to carry information about
the shape is to use Principal Component Analysis (PCA). PCA
allows to reduce the number of dimensions and keep essential
data which are more manageable. Basically equation 2 will be
changed into the following equation using PCA:

x = x̄ + Φbs (3)

where bs is a vector, containing parameters of the shape
model, x̄ is the mean shape and Φ which can be seen as a
dictionnary. The following part will explain how to compute
Φ in order to make an estimation of the shape x.

In order to create a model, the following steps have to be
done which are just PCA steps:

• Compute the mean shape:

x̄ =
1

s

s∑
i=1

xi (4)

where xi is the ith shape.
• Compute the covariance matrix:

S =
1

s− 1

s∑
i=1

(xi − x̄)(xi − x̄)T (5)

For computation efficiency, the following trick can be
applied:

– Substract the mean shape from the data in order to
be able to compute the scatter matrix

xi = xi − x̄ (6)

– Having a mean equal to zero, it is simple to compute
the scatter matrix as:

S = XXt (7)

where X is the matrix of the different shapes as X =
{x1, ..., xs}

• Compute the eigenvectors ϕi and eigenvalues λi of the
scatter matrix S. The eigenvectors ϕi have to be sorted
regarding the values of the eigenvalues λi. Then, Φ and
Λ are defined as:

Φ = {ϕ1, ..., ϕn} (8)
Λ = {λ1, ..., λn} (9)

At this point, any shape of the training dataset can be
computed using the equation 3. However, at this point
the number of dimension is n. The main goal of PCA
is to reduce a maximum number of dimension to have
data, which is more manageable and in the same time
keep as much information as possible. In order to obtain
a good compromise, the new number of dimension k is
computed as:

k∑
i=1

λi = fp

n∑
i=1

λi (10)

where fp is the proportion of the total variation. Usually,
this number is around 0.98 or 0.99. Reducing the number
of dimensions, equation 3 can be written as:

x ≈ x̄ + Φbs (11)

with Φ defined as:

Φ = {ϕ1, ..., ϕk} (12)

A problem with this PCA scheme is that if the number of
dimension is really big, it will be impossible in practise to
compute the scatter matrix S. A small size trick can allow
to compute the dictionnary Φ without computing the scatter
matrix S. The steps are presented below:

• Compute the mean shape:

x̄ =
1

s

s∑
i=1

xi (13)

where xi is the ith shape.
• Compute the matrix T :

– Substract the mean shape from the data in order to
be able to compute the scatter matrix

xi = xi − x̄ (14)

– Having a mean equal to zero, it is simple to compute
the scatter matrix as:

T = XtX (15)

where X is the matrix of the different shapes as X =
{x1, ..., xs}

• Compute the eigenvectors ψi and eigenvalues λi of the
scatter matrix S. The eigenvectors ψi have to be sorted
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Figure 4. Effect of varying each of the three first parameters of the vector
b idenpendently of ±3

√
λi where λi corresponds to the ith parameter.

regarding the values of the eigenvalues λi. Then, Ψ and
Λ are defined as:

Ψ = {ψ1, ..., ψn} (16)
Λ = {λ1, ..., λn} (17)

• Convert the eigenvectors computed from XtX to XXt:

ϕi =
1√
λi
ψi (18)

and

Φ = {ϕ1, ..., ϕn} (19)

At this point, any shape of the training dataset can
be computed using the equation 3. However, at this
point the number of dimension is n. As is mentioned
before, the main goal of PCA is to reduce the number
of dimensions, in order to have more manageable data
and much information as possible. In this case the new
dimension k is computed as:

k∑
i=1

λi = fp

n∑
i=1

λi (20)

where fp is the proportion of the total variation. Usually,
this number is around 0.98 or 0.99. Reducing the number
of dimensions, equation 3 can be written as:

x ≈ x̄ + Φbs (21)

with Φ defined as:

Φ = {ϕ1, ..., ϕk} (22)

3) Example of shape models: Using the database presented
in section II, the dictionnary Φ was computed keeping a
proportion of 0.98 of the sum of the eigenvalues Λ. Figure
4 presents the effect of varying the three first parameters of
the vector b idenpendently with a value of ±3

√
λi where λi

corresponds to the ith parameter.

B. Statistical Appearance Model

In order to have a complete and realistic image of objects or
faces both shape and texture of the objects should be modelled.
Appearance models are based on variation of shape and texture
models as well as correlations between them. Appearance
model is the combination of the shape model with texture
model on a normalized shape frame. Texture is defined as a
pattern of intensities or colours across the image patch [5].
In order to obtain the appearance model a training set of
labelled images are required [5]. The mean shape of training
set could be obtained based on statistical shape model, which
was explained in previous section. In the next step, wrapping
each training example to the corresponding mean shape will
result in free patch image. The texture model then could be
built based on variations of free patches.

Different stage of texture model and final appearance model
are explained in the following.

1) Texture models: As it mentioned before texture mod-
els are based on intensities or colour variations over image
patches. In the first step each example image is wrapped
to the corresponding mean shape model. In the second step
the obtained result from wrapping are normalized and in the
third step the final texture model is obtained from PCA on
the normalized data. Detail explanation of three main step of
texture modelling, are listed in the following:

• Image Wrapping:
Wrapping each image to its mean shape will remove
specious texture variations. These variations would be
the result of eigenvalue decomposition on not normalized
data [5]. The basic idea of image wrapping is to map
control points in one image to another image. The points
are mapped from the original position xi to new position
x

′

i based on continuous mapping function f , Equation
23. Using this function all the points in the first image
could map to the second image; however it is likely to
find some holes in the mapped image [5].

In practice, in order to avoid these holes, the reverse
map function, f

′
have been used. The reverse map

function will find the originated point of each pixel x
′

i

in mapped image. It should be considered that reverse
map function is not necessary the inverse version of f ;
however this could be good approximation [5]. Several
wrapping functions could be used such as piece wise
affine function and plate spline interpolator. The piece
wise affine function was used in this practice.
Piece wise affine function is the simplest wrapping
function based on the assumption that each fi is linear
in the local regions and zero every where else [5]. Based
on this assumption for 2D scene, triangulation could be
used to partition the image into smaller regions. The
affine motion then could be used to map the corners
of each triangle to their new positions in the mapped
image. Triangulation is based on Delauney method,
which is already implemented by Matlab functions.
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Figure 5. Piece wise affine wrap

f(xi) = x
′

i,∀i = 1 . . . n (23)

Considering the triangulation mesh, every pixel,x in
image lies in one triangle. Let us assume (x0i , y

0
i )T ,

(x0j , y
0
j )T and (x0k, y

0
k)T as three vertices of the first

triangle [6], which correspond to (xi, yi)
T , (xj , yj)

T and
(xk, yk)T , three vertices of mapped triangle in the new
image. The two triangles are shown in Figure (5).
With reference to Figure 5,[6], each point in the original
triangle such as, x = (x, y)T can be defined in accor-
dance to three vertices of the triangle by Equation 24,
where α and β are defined as Equations 25 and 26 [6].

x = (x0i , y
0
i )T + α[(x0j , y

0
j )T − (x0i , y

0
i )T ]

+ β[(x0k, y
0
k)T − (x0i , y

0
i )T ] (24)

α =
(x− x0i )(y0k − y0i )− (y − y0i )(x0k − x0i )

(x0j − x0i )(y0k − y0i )− (yj0 − y0i )(x0k − x0i )
(25)

β =
(y − y0i )(x0j − x0i )− (x− x0i )(y0j − y0i )

(x0j − x0i )(y0k − y0i )− (yj0 − y0i )(x0k − x0i )
(26)

The affine transformation then could be used to map each
point, x = (x, y)T to its corresponding point, Equation
27. This equation can be simplified in terms of Equation
28. Considering equation 28, the six parameters could
be obtained from equations 24, 25, 26 and 27, once per
triangle [6]. In general the computation of piece wise
affine wrap could be structured based on it’s pseudocode
[6].

W (x; p) = (xi, yi)
T + α[(xj , yj)

T − (xi, yi)
T ]

+ β[(xk, yk)T − (xi, yi)
T ] (27)

W (x; p) = (a1 + a2.x+ a3.y, a4 + a5.x+ a6.y)T (28)

Figure 6 shows obtained triangulated results with the
land marks on three first mean shapes, while λ is
changing between −3 and +3.

• Normalization:
The normalization is required, in order to minimize the
effects of global lighting variations [5]. The scaling factor
α and offset factor β are used to normalize example
samples [5]. The texture vector gim, then could be
normalized based on Equation 29 [5] , where the values
of α and β are based on mean of normalized data ḡ. These

Algorithm 1 Pseudocode of Image wrapping - Piece wise
affine function

Given the shape parameters
for Each shape model and its parameters do

Compute the triangulation
Compute (xi, yi)

T for all the vertices in triangulated
mesh
Compute, (a1, a2, a3, a4, a5, a6) for each triangle
for Each pixel in the original mesh do

found the triangle it belongs
Find the corresponding six values
,(a1, a2, a3, a4, a5, a6)
Compute the wrap using Equation 27

end for
end for

Figure 6. Triangulated results with the landmarks

values should be chosen in way that sum of elements will
be zero and the variance, unity. Based on this definition
α and β can be defined as Equation 30 and 31, where n
is number of elements in the vector.

g = (gim − β1)/α (29)

α = gim.ḡ (30)

β = (gim1)/n (31)

• PCA:
A linear model could be obtained by applying PCA
on the normalized data. By using PCA the texture
model could be defined as Equation 32, where g is the
mean normalized grey level vector, Pg is the set of
eigenvectors representing texture models and bg is the
set of grey level parameters [5].

g = ḡ + Pgbg (32)

Figure 7 shows the results obtained for the texture
models, based on the three first mean faces and their
corresponding variations of +3 and −3, λ.
In the same way, the model can be computed for color
images as shown in figure 8. Color texture modeling will
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Figure 7. Grayscale texture models

Figure 8. Color texture models

be memory problem because size of the image is multiply
by the number of channels.

2) Appearance model: As it was mentioned before since
there is correlation between texture and shape models, the final
appearance model is based on their combination. In this case
the appearance model could be obtained by applying PCA
on the combined results. Considering bg and bs as parameter
vectors of texture and shape respectively, an integrated vector
b can be defined based on their combination, Equation 33.

The value Ws is a diagonal matrix of weight for each shape
parameters [5]. This matrix is required based on the fact that
bg and bs are representing different parameters. The texture
model is based on intensity variations while the shape model
is in accordance to distance unit. In order to combine two
parameters the variation effect of bs on sample g should be
considered [5]. The value Ws could be obtained from element
displacement of bs with reference to its optimum value in each
training example. The RMS change in g per unit change in

Figure 9. Left: texture model, Center: Appearance model, Right: Difference
between both images

shape parameters, bs will give the appropriate Ws. The weight
also could be calculated based on the ration of total intensity
variation to total shape variation.

b =

[
Wsbs
bg

]
=

[
WsP

T
s (x− x̄)

PT
g (g − ḡ)

]
(33)

PCA cab be further applied to this integrated vectors, b as it
is shown in Equation 34. Vector Pc stands for eigenvectors
and c is the vector of appearance parameters controlling both
shape and texture models. This means that shape and grey
level models(texture)could be expressed as a function of c.

b = Pcc (34)

Figure 9 shows the results obtained for the appearance
model. First image on the right is texture model obtained
from previous section, while the center image represent the
combined image(Appearance model) and the last image is the
difference between both images.

IV. IMPLEMENTATION

The active appearance model was implemented in two main
steps, training and testing. A multi scale implementation was
used in order to improve the robustness and efficiency of
the framework. The multi scale framework was used both in
training and testing stage.

In multi resolution frame the algorithm first will look for
the object in the coarse image. In the next steps it will refine
the locations in finer scales of the image [5]. In each multi
scale frames the base image is the original image, the next
scale image is obtained by smoothing the original image
while it it’s size is reduced to half. The number of scales
could be adjusted based on the user interests; however the
computational cost will increase in higher scales. This section
contains the pseudocode of the training stage as well as testing
stage.

V. ACTIVE APPEARANCE MODEL RESULTS

Figure 10 and 11 present the AAM result. However, result
shown on figure 11 is actually better as shown after that some
bugs were fixed.

Regarding the tracking task, AAM can be used just mod-
ifyinf the strategy of searching the model without any mul-
tiresolution approach.
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Algorithm 2 Pseudocode: Training Stage
Load training data
for Scale 1 : N do

Computation of Shape models
• Align shapes with Procrustes Analysis
• Obtain main directions of variations with PCA
• Keep the 98% most significant eigenvectors

Computation of Texture models
• Transform face image into mean texture image (Image

wrapping)
• Normalize the grey scale, to compensate for illumina-

tion
• Perform PCA
• Keep the 99% most significant eigenvectors

Computation of Combined shape(Appearance Model)
• Addition of shape and texture models
• Perform PCA
• Keep the 99% most significant eigenvectors

Search model
• Find object location in the test set
• Training done by translation and intensity difference

computation (keep position with smallest difference)
Transform image to Coarser scale

end for

Algorithm 3 Pseudocode: Test Stage
Manual Initialization
for Scale 1 : N(Start in Coarser scale) do

Adopting the model for the current scale
Scale the image
Search iterations
for Number of iterations do

Sample image intensities
Compute the difference between model and real image
intensities
if Previous error less than current error then

Go to the previous location
else

Update the error
end if

end for
Next finer scale

end for
Show the result

VI. DISCUSSION AND CONCLUSION

The active shape model was developed with reference to
the well known AAM model presented by [5]. In order to
improve the results for more robust algorithm, multi resolution
scheme was implemented in both testing and training stage.
An iterative steps was also added in the testing stage in order
to fit the algorithm to face images. Given the initial starting
position the search will converge quickly and computation will
not take long time, considering the right training provided. In

Figure 10. AAM fitting on an image which was not use for the training

Figure 11. Texture modeling on an image which was not use for the training

the other hand training stage appears time consuming. The
expensive computational time, is most probably due to MAT-
LAB environment. Finally concerning real time application,
the proposed algorithm might fail, due to the long computation
time.

Comparing active shape models with active appearance
models it was proved that AAM provide more robust results
and relatively better performance, however the algorithm still
have some difficulty in terms of occluded faces and it will fail
in terms of texture models.

Implemented algorithm does not provide satisfied results in
terms of face tracking. The main problem is due to the texture
models obtained in training stage. Due to the computational
cost of training stage the texture models obtained for current
tracking stage are not suitable enough.
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