Autonomous Robot: Path planning

Guillaume Lemaitre - Sophia Bano
Heriot-Watt University, Universitat de Girona, Université de Bourgogne
g.lemaitre58 @ gmail.com - sophiabano@hotmail.com

I. OBIECTIVE

The main objective of this laboratory exercise was
to program the e-puck Robot for path planning be-
haviour using Webots Environment . The path planning
behaviour has to be implemented using bug 2 algorithm.

II. INTRODUCTION

In order to solve path planning problems, Bug al-
gorithms are used which are the simplest sensor-based
planner. The Bug algorithm family are well-known robot
navigation algorithms with proven termination condi-
tions for unknown environments [1] [2].

The general idea of bug 2 algorithm is that move
the robot towards the goal, unless an obstacle is en-
countered,, in which case, circumnavigate the robot until
motion toward the goal is once again allowable. Thus in
Bug 2 algorithm a line is first drawn, which is called
m-line, from start point to goal point. The robot tries to
follow this line from start of program. Thus robot align
itself over this line. Now if an obstacle is detected, robot
leaves this line and start following the obstacle, until it
detects m-line again. At this stage, robot starts following
m-line again as shown in Figure 1

* Start

Figure 1. General Diagram illustrating Bug 2 Algorithm

distance to goal

p ! delta
y
. o
distanc tc:,m-\lne thetal

Figure 2. Geometric representation of the robot

III. THEORY AND IMPLEMENTATION
A. Geometry

In order to plan the path which will allow to achieve
the goal, the three different measures will be computed.

o Distance to the goal: Euclidean distance between
the centre of the robot and the goal position.

o Delta: angle between the x axis of the robot and
the goal position.

« Distance to the m-line: Euclidean distance between
the centre of the robot and the m-line.

The figure 2 shows the geometric representation of
these different distances and angles.

The following parts will introduce the mathematical
tools permitting to compute these different parameters.
All variables used are presented on the figure 2.

1) Distance from the robot to the goal: The formula
which allows to compute the Euclidean distance between
the center of the robot and the goal position is:

Dyoat = \/ (g +72)2 + (g +7,)2 M

The code implementing this formula is presented
below:

static double eucl_dist_rob_goal(double gx

, double gy, double rx, double ry)
{
return sqgrt ((gx—rx)*x(gx—rx)+(gy—ry
))*x(gy—ry));

2) Angle from the robot to the goal: The formula
which allows to compute the angle between the center
of the robot and the goal positiond is:

d=a-—10)
where
o = arctan Iy Ty 3)
e — Tz

and 6 is given by the odometry as the angle between
the horizontal and the x axis of the robot

The code implementing this formula is presented
below:

static double delta_xrob_goal(double gx,
double gy, double rx, double ry,
double theta)

double alpha = 0;

alpha = ((atan2((gy-ry) ,(gx—rx)))
x180)/3.14159;
printf(”\n_alpha.=_.%.11f" ,alpha);

theta_wrap=thetax180/3.141592;
if (theta_wrap >180)

{

theta_wrap=theta_wrap—360;

else if (theta_wrap < —180)
{

theta_wrap=theta_wrap+360;
}

double vac = alpha — theta_wrap;

printf(”\n.theta_wrap_=_%.11f",
theta_wrap);
printf(”\n.vac_=_%.11f" ,vac);

return vac;

3) Distance from the robot to the m-line: The formula
which allows to compute the Euclidean distance between
the center of the robot and the m-line:

rwxgy—ryxgl.l
\/ 95 + 92

and 6 is given by the odometry as the angle between
the horizontal and the z axis of the robot

“4)

Dm—line - |

The code implementing this formula is presented
below:

static double eucl_dist_rob_mline(double
rx, double ry, double gx, double gy)
{

double vac =

if (vac > 0)

return ((rx*xgy—ry*gx)/(sqrt(gy*gy+
gx*gx)));

rR*gy—ry*gx;

else
return (—(rxxgy—ry*gx)/(sqrt(gy*xgy+gx*gx
1))

B. Implementing Path Planning - Bug 2

There are two modes of operations or behaviours of
Robot which has to be implemented in order to develop
Bug 2 algorithm using e-puck Robot.

o Head Towards Goal Behaviour
o Obstacle Following Behaviour

1) Head Towards Goal Behaviour: The aim of this
step of the algorithm is to approach the m-line and
follows it until the goal. However, if an obstacle is found
on the trajectory, the robot will follow the object until
to find again the m-line. This last part is implemented
in the next section.

Four different behaviours are implemented:
o The robot is not oriented to the direction of the goal

When the robot is not oriented to the direction of the
goal, when 0 is greater than 20°, the robot will only
rotate with the maximum angle speed (60.0).

o The robot is oriented to the direction of the goal

When the robot is oriented to the direction of the goal,
when ¢ is inferior than 20°, the robot will go in the
direction of the goal with a linear speed important

(100.0) and an angle speed proportional to § as the
angular speed is equal at three times J.

o The robot is near of the goal

When the robot arrives near of the object and that the
Euclidean distance computes is less than 2 centimeters,
the robot reach is final position and the angular and linear
speed are equal to zero.

e The robot meet an obstacle

When the robot meet an obstacle to the front of it, the
object following behaviour is validate and the state 1 is
activated.

The following code allows to implement the previous
behaviour described.

if (state==0)

{

if ((sensors_value[0]<thres) || (
sensors_value[l]<thres) ||(
sensors_value[6]<thres) ||(
sensors_value|[7] < thres))

printf(”Detected_object.—>._state_1.\n”
)

state=1;

}

else

{

printf(”Going._ahead._\n");
state=0;

if (delta>thres_angle)
{
linear_speed=0.0;
angular_speed=60.0;
P
else if
{
linear_speed=0.0;
angular_speed=—60.0;
}
else
{
linear_speed=100.0;
angular_speed=(3xdelta);

(delta< (—thres_angle))

}

if (eudist<0.02)

{
linear_speed=0;
angular_speed=0;
printf(”\n.mline_achieved .=_%..2 1f”,
dist_mline);

flag = 1;

2) Obstacle Following Behaviour: Once the Head
towards goal behaviour is implemented, next task is to
implement obstacle following behaviour which takes into
account head towards goal behaviour as well. Obstacle
following behaviour has already been implemented in
laboratory exercise 4. To merge these two behaviours
following modifications has been done in obstacle fol-
lowing code:

o State 0

If the robot does not sense anything in front of it, it will
keep on following the mline as discussed in previous
section. But once it detects obstacle it will jump to state
1. This is shown in Figure 3(a).

o State 1

Once the robot sense obstacle in front, it will jump to this
state. The robot will keep on turning left until sensor 2
detects obstacle and sensor O and 1 does not detect any
obstacle. At this point robot will jump to state 2 but
there are two conditions for path planning which has to
be considered.

o Robot is not on mline and it jumps to state 2.
« Robot is on mline and it jumps to state 2.

To distinguish between these two condition flag2 is used.
If the robot is already on mline flag2 is set to 1, else
flag2 will be zero. The general algorithm is summarized
in Figure 3(b). The modified code for this state is as
following:

if (state == 1)

{

// /1] 1f the robot is
one obstacle

// 11/ And that the front of the
free

if ((sensors_value[2] <(thres+0.3)) && ((
sensors_value[l]>thres—0.3)&&(
sensors_value[0]>thres)))

perpendicular to

robot is

//'// Go to the state 2
printf(”\n_Perpendicular_to_.the_object
and_free_field_at_the_front_—>_

state .2.\n");
state=2;
if ((dist_mlinex*x100) < mline_thres)

flag2=1;

}

/111l Otherwise
else

{

/1'1] Turn left
printf(”\n_Turning._left.\n");
state=1;

linear_speed=0.0;
angular_speed=100.0;

« State 2

When in State 2, robot will keep on following the
obstacle until it detects an mline. If flag2 = 1 at the
beginning of state 2, this means that robot is already on
mline when it found an obstacle and now it has to follow
obstacle. So it follows obstacle and starts moving away
from mline. When if moves a distance of mline threshold
away from mline , status of flag2 is changes to zero
again. This shows that robot is no longer on mline.

The robot will follow the obstacle until it detects mline
again. At this point robot will take a hard left turn so that
sensor 2 no longer remain close to obstacle. At this stage
robot will jump to state 0 again. The general algorithm
is summarized in Figure 3(c). The modified code for this
state is as following:

[ETTEELr i rrrrrrirrrrtri
// Following the
// obstacle the
// possible

// Until the moment
// the robot detect
/! something at

nearest

that

// the front —> Return to
// the state 1 to be perpendicular
// and have a free front range

LT i rrrrr

if (state==2)

/1] If the robot is perpendicular and
near of the obstacle
if (sensors_value[2]<thres+0.5)
{
L1100 0 0 rrrrrrrrrrrrrry
// 11/ Definition of variables
/1'1// Definition of the slope
double m=10;

/1'1// Parameter for the linear
function to use the angle

double pl = 5;

double p2 = 25;

double p3 = 10;

LTI rrirrrrrrirrri

/1'1// Compute the distance between the
sensor at 90

// 1!/ and the sensors at 45

double d=sensors_value[l]—
sensors_value[2];

LTI rrrrrrrrrrl

[T rrrrrrrirrry

/1//] Function to find the
distance between

minimum

/1 11/ the sensor at 90 and 45
double min_sensor = 0;
if (sensors_value[l]>sensors_value[2])
{
min_sensor = sensors_value[2];
}
else
{
min_sensor = sensors_value[l];

LT rrrrry

L1010 rrrrrirrrrrrsy
// 1f the distance between
//'both sensor is so important
// It seems that the robot
// is an corner of the obtacle
// and has to turn right
[T PTTIrrrrrrrrrirrrry
if (d>1)
{
[T ELTrrrrrrrrrrrrrry
/!l 'We have to compute
// the angular speed
/] depending
// of the distance of
// where the robot is
// the border of the
[P rrrrrrrlrrrri

from
obstacle

[P0 rrrrrrrrrri
// if the robot is near
// of the corner

// turn the softest as
/1l possible

[P0 rrrrrrrirri

if (min_sensor<thres — 0.5)

{
linear_speed=80.0;
angular_speed=—((m*xmin_sensor)+pl)

printf(”\n_.Corner_near:_Turn_soft.
right_\n");

}
LTI rrirrrry

// if the robot is going
/! to far of the corner
// Turn more to the right

LT rrirrrrrrrny

else if (min_sensor > thres)

{
linear_speed=80.0;
angular_speed=—((m*min_sensor)+p2)

printf(”\n.Corner.far:_Turn_hard.
right_.\n");

}

[T EErrrrrrrrrri

/1] Otherwise

NNy,

else

{
linear_speed=80.0;
angular_speed=—((m*xd)+p3);
printf(”\n_Turn_right_.\n");

flag = 0;

}
LT rrirrrrry

/1
/1
/1

If the robot follow
the edge but is to near of
the edge —> turn left

[111101 rrrrrrrry
else if ((d<=1) && (sensors_value[2]<

{

thres))

printf(”\n_Too_near_of_the_edge —>.
turn.left.\n");

linear_speed=80.0;

angular_speed=20.0;

flag = 0;

}
[E1TEHETrrrrrrrrrry
// Otherwise

// Go ahead
1111010110 rrrrrrty
else

{

printf(”\n_Going.ahead._.\n");
linear_speed=80.0;
angular_speed=0.0;

flag = 0;

11110011010y
/111 1f we detect

//an object at the

// front of the robot

/I —> state 1 to be

/! perpendicular and have

/' free front range

HELTEEErrrrrrrrrrry

if ((sensors_value[0]<thres) ||(
sensors_value[7]<thres))

printf(”\n.Object_at_the_front.—>.
state _1.\n");
state = 1;
}
}

[P ETTrrrrrrrrrrlri

// 1f the sensors

// of the side have

//big values, it means

// that the robot doesn’t

// follow anymore an obstacle

// —> Go to the state O

// to find a new obstacle

[0 0TTHrrrrrrrrrlri

else if ((sensors_value[l]>=3.5) && (

sensors_value[2] >=3.5))

{
linear_speed=80.0;
angular_speed=0.0;
state=0;
printf(”\n.Loose_the_object_—>_state .0

A\An”) s
}

if (((dist_mlinex100) < mline_thres)&&(
flag == 0)&&(flag2==0))
{

printf(”\n.Detect_the _m-line .—>_turn.
left _hard.\n");

linear_speed=0.0;

angular_speed=200.0;

state = 0;

flag = 1;
if (((dist_mlinex100) >= mline_thres)&&(
flag2==1))
flag2=0;
}
}
IV. RESULTS

Results for three different mline and obstacles in way
to mline are shown in Figure 4, 5 and 6. The mline
is shown in red, while the path followed by robot is
shown in blue colour. Note that in all three results shown
robot successfully follow the two behaviours of Bug 2

If (sensor 0 or 1 or 6
or 7 < threshold)

- Obstacle ahead
- Go to State 1

- No Obstacle ahead
- Keep on following m-line

(a) State 0

- Perpendicular to obstacle

- No object in front

- Go to State 2

- Set flag2 if distance to miine < mline threshold

f (sensor 2 < threshold
and sensor 0 and 1 are
greater than threshold

Keep on tuming left

(b) State 1

Follow obstacle until miine is detected

- miine detected
- turn left hard to make front sensors free of obstacle
- Go to state 0

(distance to mling

< miine threshold
and flag? is zero

(distance to miing
> mline threshold
and flag? is 1

- Robot no more on miine
- Robot is following obstacle to detect mline again
- make flag2 =0

(c) State 2

Figure 3.
Algorithm

Flow of each state after implementing Path Planning

XY trajectory [m]

03r 1

0 01 02 03 ad 05
Figure 4. Path Planning Result with a single obstacle in way of mline

algorithm, i-e, it successfully go ahead towards the goal
following mline and if it finds an obstacle in its way,it
circumnavigate around the obstacle until it finds mline
again.

V. CONCLUSION

Bug 2 path planning algorithm has been successfully
implemented. Results shows that our developed algo-

XY trajectory [m]

0.3f 1

0.2} 1

04} 1

Figure 5. Path Planning Result with two obstacles in way of mline

XY trajectory [m]

Figure 6.
Robot way

Path Planning Result with two difficult obstacle within

rithm is capable of achieving both behaviours of Bug
2 algorithm accurately.

REFERENCES

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. Cambridge, MA: MIT Press,
June 2005.

[2] V.Lumelsky and A. Stepanov, “Path-planning strategies for a point
mobile automaton moving amidst unknown obstacles of arbitrary
shape,” Algorithmica, vol. 2, no. 1, pp. 403-430, 1987.

APPENDIX A
CODE

#include <webots/robot.h>

#include <webots/differential_wheels .h>
#include <webots/distance_sensor .h>
#include <webots/light_sensor.h>
#include <webots/camera.h>

#include <webots/accelerometer.h>
#include <math.h>

#include <time.h>

#include <sys/time.h>

#include <stdio.h>

#define TIME_STEP 256
#define WHEEL_RADIUS 0.0205
#define AXLE_LENGTH 0.053

/* GLOBAL VARIABLES =/

double sim_time,real_time;
double 1_past,r_past;

double dl,dr,d,da;

double theta,x,y;

double sensors_value[8];

double linear_speed,angular_speed;
double left_speed, right_speed;
double displacement;

double IR2dist=0;

int count=0;

int flag=0;

int flag2=0;

double theta_wrap;

double state, iniX, 1iniY, iniTheta;

double gx=2;

double gy=0;

double eudist,delta,dist_mline;
double thres_angle=20;

float mline_thres=2;

static void compute_odometry() {
double 1 = wb_differential_wheels_get_left_encoder();
double r = whb_differential_wheels_get_right_encoder();

dl

((1-1_past) / 1000.0) = 2 * 3.141592% WHEEL_RADIUS; // distance covered by left wheel
in meter

dr = ((r—r_past) / 1000.0) = 2 % 3.141592% WHEEL_RADIUS; // distance covered by right
wheel in meter

d = (dr + d1) / 2 ;

da = (dr — dl) / AXLE_LENGTH; // delta orientation

r_past=r;

1_past=1;

displacement=displacement+(d*100);

// printf (”estimated distance covered by left wheel: %g m.\n”,dl);
// printf(”estimated distance covered by right wheel: %g m.\n”,dr);
printf(”estimated._distance.covered_by.the_robot: _%g.m.\n”,d);

// printf(”estimated change of orientation: %g rad.\n”,da);

// printf (”Wheel distances: l= %f; r= %f; dl= %f; dr= %f; d= %f; da= ‘%f;\n",l ,r,dl ,dr,d,da)

theta=theta+da;
x=x+d*cos(theta);
y=y+d*sin(theta);

printf(”displacement: . %f.\n” ,displacement);

static double eucl_dist_rob_goal(double gx, double gy, double rx, double ry)

// Compute the euclidean distance between the robot and the goal point
return sqgrt ((gx—rx)*(gx—rx)+(gy—ry) *(gy—ry));

}

static double delta_xrob_goal(double gx, double gy, double rx, double ry, double theta)

{

double alpha = 0;
alpha = ((atan2((gy—-ry) ,(gx—rx)))*180)/3.14159;
printf(”\n_.alpha_=_%.11f" ,alpha);
//Wrap theta
theta_wrap=thetax180/3.141592;
//printf(”\n theta = %.11f”,theta);
if (theta_wrap >180)

theta_wrap=theta_wrap—360;

else if (theta_wrap < —180)

{
}

double vac = alpha — theta_wrap;

theta_wrap=theta_wrap+360;

printf(”\n_theta_wrap.=_.%.11f” ,theta_wrap);
printf(”\n.vac.=_%.11f” ,vac);

return vac;

}

static double eucl_dist_rob_mline(double rx, double ry, double gx, double gy)

// Compute the euclidean distance
double vac = rxxgy—ry*gx;
if (vac > 0)

return ((rx*xgy—ry*xgx)/(sqrt(gy*gy+gx*gx)));
else

return (—(rxxgy—ry*gx)/(sqrt(gy*xgy+gx*gx)));

}

static void high_level_controller() {

LETLTIETE i i rrrrrrrr
/1'// Definition of parameters

[0 DHDILE i iiirirrrirrrlirlrg
double thres=1.5;

eudist=eucl_dist_rob_goal(gx,gy,X,Vy);
delta=delta_xrob_goal(gx,gy,x,y,theta);
dist_mline=eucl_dist_rob_mline(gx,gy,x,V);

printf(”\n.flag.: %d_.\n",flag);

LETLTIETE i i i i i rrrrrrr
//'//] TInitialisation state

/111 Go in ahead until to find an object

/1 /1] When an object is detected go to the state 1
JETLTIELE i i i rrrrrrrry
if (state==0)

/1] 1f ab object is detected
if ((sensors_value[0]<thres) ||(sensors_value[l]<thres)
sensors_value[7] < thres))

/1'// Go to the next state
printf(”Detected_object.—>_state._l.\n");
state=1;

/11 Otherwise
else

{

// /] Go ahead
printf(”Going_ahead._\n");
state=0;

if (delta>thres_angle)

{
linear_speed=0.0;
angular_speed=60.0;

else if (delta< (—thres_angle))

t linear_speed=0.0;
angular_speed=—60.0;

}

else

{
linear_speed=100.0;
angular_speed=(3xdelta);

}

if (eudist<0.02)

{

linear_speed=0;
angular_speed=0;
printf(”\n_.mline.achieved.=_%..2 1f” ,dist_mline);

/lprintf(”\ ndelta = %.21f\n”,delta);
/lprintf(”dist goal = %.21f\n”,eudist);
//printf(”dist mline = %.21f\n”,dist_mline);
flag = 1;

//linear_speed =80.0;

|| (sensors_value[6]<thres)

I (

//angular_speed =0.0;
}
}

[P0 rrrrrrrrirrrrrrr
/1'/1/] State to put the robot perpendicular to an obstacle
///// and in the same time that no obstacle are on the
/1'1/] front of the robot
[ELTLEI0 i rrrrrrrrrrrrrrrr
if (state == 1)
{
//1// 1f the robot is perpendicular to one obstacle
///// And that the front of the robot is free
if ((sensors_value[2] <(thres+0.3)) && ((sensors_value[l]>thres—0.3)&&(sensors_value[0]>
thres)))

/11 Go to the state 2
printf(”\n_Perpendicular._to_the_object_and_free_field_at_the_front_.—>_state._2.\n");
state=2;

if ((dist_mlinex*x100) < mline_thres)

flag2=1;

}

/111 Otherwise

else

{
/1// Turn left
printf(”\n_Turning.left.\n");
state=1;
linear_speed=0.0;
angular_speed=100.0;

}

}

LETLTEELEr i i i i rr i i i rrrrrrry
/111 Following the obstacle the nearest possible

/11177 Until the moment that the robot detect something at

/1111 the front —> Return to the state 1 to be perpendicular

/1 /1] and have a free front range

LTI i i i rr i rr i rr i rr i rrrrrrry

if (state==2)

/1] 1f the robot is perpendicular and near of the obstacle
if (sensors_value[2]<thres+0.5)
{
LELTLEEL L rr i rr i rrrrrrrrrrrrr
///// Definition of variables
/1 /1] Definition of the slope
double m=10;
/1 11/ Parameter for the linear function to use the angle

double pl = 5;
double p2 = 25;
double p3 = 10;

[T TTE P i i rrirrrrrirrrrrlirilri
/1'1// Compute the distance between the sensor at 90

// 1!/ and the sensors at 45

double d=sensors_value[l]—sensors_value[2];
L1100 r i i rrrrrrrrrrrrrirrgg
[ETTLTTEET il rrirrrriirrirrlirs/

10

///// Function to find the minimum distance between
/111 the sensor at 90 and 45

double min_sensor = 0;

if (sensors_value[l]>sensors_value[2])
t min_sensor = sensors_value[2];

ilse

! min_sensor = sensors_value[l];

LETLLEETErrrrrrr i i i i i i i i i i i i i i i iy

LETLEEETErrrrrr i r i rr i i i i i iy
/1'1// 1f the distance between both sensor is so important
/1111 It seems that the robot is an corner of the obtacle
//'/// and has to turn right

LT rr i i i i i i i i iy
if (d>1)

LTI DT0E i i rrrrrrrrrrrrrrrrrrrrirgg
/1'// We have to compute the angular speed depending

// /] of the distance of where the robot is from

///] the border of the obstacle

[ETTLETE i rrrrrrrrgg

LELTTEETETE i rr i r i r i i r i r i i r i i rrr i rrrg
/11 if the robot is near of the corner
/1'// turn the softest as possible
HELTTEIEEI i r i r b i r i i i rrrriirg
if (min_sensor<thres — 0.5)
{
linear_speed=80.0;
angular_speed=—((m*min_sensor)+pl) ;
printf(”\n_Corner_near:._.Turn_soft_right.\n");

LETLLITE i i i i i i i il
/1// if the robot is going to far of the corner
//'// Turn more to the right
LETLTLITL i i i i rrrrirrrrsri
else if (min_sensor > thres)
{
linear_speed=80.0;
angular_speed=—((mxmin_sensor)+p2);
printf(”\n_Corner_far:_Turn_.hard_right.\n");

I3
LTI TEIEIL i i i rrrirrrrrrrrg
/11 Otherwise
LTI i i irrrrrrrrg
else
{

linear_speed=80.0;

angular_speed=—((mxd)+p3);

printf(”\n_.Turn_.right_.\n");

flag = 0;
LETTTIITLL L i i i i rrrirrrr
/11l 1If the robot follow the edge but is to near of

/1'1] the edge —> turn left
LETLEEETErrrrrr i i i i i i i i iy

11

else if ((d<=1) &% (sensors_value[2]<thres))
{
printf(”\n.Too.near_of _the_edge —>_turn._left.\n");
linear_speed=80.0;
angular_speed=20.0;
flag = 0;

LETLLIITE i i iy
/1 1]/ Otherwise
/111l Go ahead
[ETTTITEL i rirrirrrrirrrrrri
else
{

printf(”\n_Going.ahead._.\n");

linear_speed=80.0;

angular_speed=0.0;

flag = 0;

LETTTITLL L r i rrr1717077777
/11l 1If we detect an object at the front of the robot

/1'l/] —> state 1 to be perpendicular and have

/1] free front range

[ITLLIITLL TP irrrriirirrrrrri
if ((sensors_value[0]<thres) ||(sensors_value[7]<thres))

printf(”\n_Object_at_the_front.—>_state_1.\n");
state = 1;
}
}

[T rr i rrrrrrrrrrrrry
/111 1f the sensors of the side have big values, it means
/1 /] that the robot doesn’t follow anymore an obstacle
/11l — Go to the state 0 to find a new obstacle
[T rrrrrrrrrrrrrrrrry
else if ((sensors_value[l]>=3.5) && (sensors_value[2]>=3.5))
{

linear_speed=80.0;

angular_speed=0.0;

state=0;

printf(”\n_Loose_the_object_ —>.state.0.\n");

}

if (((dist_mline*x100) < mline_thres)&&(flag == 0)&&(flag2==0))
printf(”\n_.Detect_the.m-line —>_turn.left_hard_\n");
linear_speed=0.0;
angular_speed=200.0;
state = 0;
flag = 1;

if (((dist_mline*100) >= mline_thres)&&(flag2==1))

flag2=0;

}

12

printf(”\n.State=%.11f\n” ,state);

static void low_level_controller() {

left_speed=linear_speed—angular_speed;
right_speed=linear_speed+angular_speed;

}

static void update_log_file() {

int 1i;

FILE * logFile;

logFile = fopen(’logFile.txt”,”a”
fprintf(logFile, “%f %f %t _%f _%f” ,real_time,sim_time,x,y,theta);

for (i = 0; i< 8; i++) {
fprintf(logFile, ”_%f” ,sensors_valuel[i]);

fprintf(logFile, 7. %f _%f _%f _%f_\n",linear_speed,angular_speed,left_speed,right_speed);

fclose (logFile);
printf(”Time:._real=%0.3fs;_sim=%0.3fs._.\nPosition:_x=_%0.3fm; .y=_%0.3fm; _theta=_%0.3
fdegree;.\n",real_time,sim time,x,y,theta*180/3.141592);

sensors_value[5],sensors_value[6],sensors_value[7]);
printf(”Linearuspeed:u%ﬁllf;uAngularuspeed:u%ﬂllf;\n\n”,linear_speed,angular_speed);

}

int main(int argc, char xargv[]) {

/+* define variables x/
WbDeviceTag distance_sensor[8];
double coef[8]={0};

double value=0;

int 1i;

clock_t start, end;

/+ initialize Webots x/
wb_robot_init () ;

/* get and enable devices x/
wb_differential_wheels_enable_encoders(TIME_STEP) ;

for (i = 0; i< 8; i++) {
char device_name[4];

/% get distance sensors x/

sprintf(device_name, "ps%d”, 1);

distance_sensor[i] = wb_robot_get_device(device_name);
wb_distance_sensor_enable(distance_sensor[i],TIME_STEP);

13

printf(” Distance._sensors:.%0.1f_./_.%0.1f_/_.%0.1f_/_-%0.1f_/_-%0.1f_/_%0.1f_/_-%0.1f_/_%0.1f\n”
,sensors_value[0],sensors_value[l],sensors_value[2],sensors_value[3],sensors_value[4],

}

/+*initialize global variables */

sim_time=0.0;

real_time=0.0;

end = clock();

theta=0.0;

x=0.0;

yv=0.0;

whb_robot_step(TIME_STEP) ;

1_past = wb_differential_ wheels_get_left_encoder();
r_past = wb_differential_wheels_get_right_encoder();

state=0;

iniX = x;

iniY = vy;

iniTheta = theta;

count =0;

displacement=0;

state=0;

/* main loop =/

for (;;)
coef[8]=1.8658*pow(10,—27);
coef[7]=—3.0795*pow(10,—23);
coef[6]=2.1084%pow(10,—19);
coef[5]=—7.7546*pow(10,—16);
coef[4]=1.6596*pow(10,—12);
coef[3]=-2.0957*pow(10,—-9);
coef[2]=1.5174%pow(10,—6);
coef[1]=—0.00058968*pow(10,0);
coef[0]=0.1154%pow(10,0); // real pO=[—-2.8796c—24.4.0641e—-20,-2.309¢—16,6.7637e¢—13,—1.0882¢

—09,9.5095e —-07,—-0.0004,0.0951]
// sim p0 = [—3.5638e¢—24, 4.3924e¢—-20, —2.1927e¢—16, 5.6962e¢—13, —8.2424e¢—-10,6.6189¢—07,
—0.0003,0.06797]
for (i = 0; i< 8; i++) {

value = wb_distance_sensor_get_value(distance_sensor[i]);
if (value >4000)

\{zalue=4000;

else if(value<130)

value=130;

}

sensors_value[i] = coef[8]*xpow(value,8)+coef[7]*pow(value,7)+coef[6]*xpow(value,6)+coef[S5]x*
pow(value,5)+coef[4]xpow(value,4)+coef[3]*pow(value,3)+coef[2]*xpow(value,2)+coef[1]*
pow(value,l)+coef[0];

sensors_value[i]=sensors_value[i]*100; //m to cm

if (sensors_value[i]<0)

{

sensors_value[i]=0;
printf(”sensors_values=_%If_\n”,sensors_value[i]);

}

/% get sensors values x/
/1 for (i = 0; i < 8; i++)
/1 sensors_value[i] = wb_distance_sensor_get_value(distance_sensor[i]);

14

/%

//printf(”distance %f \n”,sensors_value[i]);
/1 }

/% compute odometry */
compute_odometry () ;

/* compute high—level control x/
high_level_controller();

eudist=eucl_dist_rob_goal (gx,gy,x,y);
printf(”\n theta = %.11f”,theta);
delta=delta_xrob_goal (gx,gy.x,y,theta);
dist_mline=eucl_dist_rob_mline (gx,gy.x,y);

if (delta>thres_angle)
{
linear_speed =0.0;
angular_speed=60.0;
}
else if (delta< (—thres_angle))
{
linear_speed =0.0;
angular_speed=—60.0;

}

else

{
linear_speed=100.0;
angular_speed=(3xdelta);

}

if (eudist <0.02)
{
linear_speed =0;
angular_speed=0;
printf(”\n mline achieved = % .21f”,dist_mline);

*/
printf(”\ndelta.=_.%.21f\n” ,delta);
printf(”dist_goal_.=_%.21f\n” ,eudist);
printf(”dist.mline.=.%.21f\n” ,dist_mline=*100);

/* compute low—level control =x/
low_level_controller();

/* set speed values =x/
wb_differential_ wheels_set_speed(left_speed,right_speed);

/* save data in a log file =/
update_log_file();

/+ perform a simulation step x/
whb_robot_step(TIME_STEP) ;

/* updating the real and simulating time x/

double cpu_time_used;

start = clock();

cpu_time_used = ((double) (start—end)) / CLOCKS_PER_SEC;
end = start;

15

real_time = real_time + cpu_time_used;
sim_time = sim_time + TIME_STEP/1000.0;

}

return 0;

