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Abstract— This report presents the research done on
methods to image abdominal aortic aneurysm (AAA) and
image post-processing methods in order to aid in the
diagnose of the disease. Though ultrasound (US), computed
tomography (CT) and magnetic resonance imaging (MRI)
are the most commonly used imaging methods, this report
will focus only on the use of CT and MRI images to
diagnose AAA. Two image processing methods will be
presented for CT images and two for MR images.

I. Introduction
An aneurysm is a vascular pathology consisting of

an irreversible dilation of a segment of a blood ves-
sel; it can be classified according to the location and
configuration of the lesion [6]. The abdominal aorta
is a continuation of the thoracic aorta and begins at
the level of the diaphragm; it is the largest artery in
the abdominal cavity. This major blood vessel can also
suffer from diseases, including an abdominal aortic
aneurysm (AAA). Figure 1 shows that AAAs appear
as swellings of the blood vessel. In radiological studies,
the diameter of a normal abdominal aorta is about 19
mm; an accepted criterion to diagnose an AAA defines
it as a fifty percentage increase of the blood vessel
diameter [6].

Fig. 1: Cadaveric specimens of the abdominal aorta.
Left: Abdominal Aortic Aneurysm. Right: Normal Ab-
dominal Aorta.

An AAA is developed when the balance between
elastin and collagen fibres, important structural com-
ponents of a blood vessel wall, is disturbed. In healthy
subjects, elastin is responsible for the elastic recoil of the
arteries due to the pulsatile blood flow [6]. Degradation

or loss of elastin fibres will then shift the load to the
collagen fibres, decreasing the elasticity of the vessel
and increasing its diameter, which in latter stages of
the disease can lead to aortic rupture [6]. Genetic
factors and environmental factors such as smoking and
atherosclerotic disease contribute to the development of
AAA; Figure 2 shows a schematic of the pathogenesis
of abdominal aortic aneurysm [6].

Fig. 2: Pathogenesis of an AAA.

It is of great clinical importance to be able to de-
termine the abdominal aortic diameter in order to
diagnose AAA and to appropriately plan a treatment or
surgical intervention. Imaging techniques such as Com-
puted Tomography and Magnetic Resonance Imaging
are of great use to show the anatomical details of the
diseased vessel. After image acquisition, image pro-
cessing methods aim to accurately segment the vessel
to be able to determine its dimensions. The following
sections will describe some post processing algorithms
currently developed in order to aid in AAA diagnosis.

II. Computed Tomography Imaging

Computed tomography (CT) and multi-detector
computed tomography (MDCT) are the most known
and used imaging techniques for evaluating aortic
aneurysm. This is due to the fact that CT provides
the best quality method for a detailed anatomical
analysis of the aneurysm and adjacent arteries [18]. CT
imaging speed is another advantage for this modality.
Different post-processing methods such as volume



rendering, maximum intensity projection or multi-
planar reformation can be used on the CT images
in order to provide useful information for treatment
planning and treatment of the lesions in and around
the aneurysm wall. The information obtained from
the CT images also highlights the three dimensional
information which could be used for 3D reconstruction
of aorta and its branches [18]. In general, CT is the
best method for showing the aortic wall, which is
of great importance in surgical planning. In some
cases, it is also the most appropriate method for
urgent patient evaluation; for instance in emergency
cases, where it is used to predict aneurysm rupture [18].

III. CT Image Processing

In this document two post processing method based
on computed tomography imaging are discussed. The
first method is concerning segmentation and three di-
mensional reconstruction of AAA through a level based
approach, while the second method uses active shape
model in order to segment and construct the 3D model
of the AAA.

A. AAA Segmentation through Level Set Methods

The level set method was used by Mageea et al. in
order to segment the complex anatomical structure
of AAA [13]. The method was used to provide
better decisions for patients in order to proceed with
endovascular repair of AAA. The proposed post
processing method was performed on CT images. This
section provides a brief overview of the proposed
methods in [13].

A level set numerical method (LSM) could be
used to track interfaces and shapes; this approach
has been previously used for modelling the surface
and objects in fluid mechanics and material science.
Recently, it has been proved that it is also useful as
a segmentation algorithm [13]. This method has the
advantage of performing numerical computations for
curves and surfaces on a fixed Cartesian grid without
parametrizing the objects [15]. It also makes it easier
to follow time varying object shapes while the object
shape change topology [15]. Figure 3a [15] can be used
to explain the general concept of level set method. The
shape in Figure 3a shows the bounded region with
well defined boundaries. This shape is determined
with the level set function ϕ; the red surface graph
shows the level set function with reference to x − y
plane, which is shown with the blue surface [15]. The
level set function ϕ is zero on the boundary of the
shape and is positive for the shape itself. This means
that shape is represented with set of points in the
plane for which ϕ is positive or zero [15]. Figure 3b
shows the same shape while it changes its topology by
splitting to two parts. This shape is easier to represent

with level sets instead of using the shape directly [15].

(a) (b)

Fig. 3: Level set method illustration

Based on the level set explanation, it could be shown
that this method represents a closed curve Γ using the
level set function ϕ where Γ is the zero level set of ϕ,
Equation(1).

Γ = {(x, y)|ϕ(x, y) = 0}, (1)

The level set function ϕ takes negative values inside
the region of Γ and positive values outside [15]. It
is able to satisfy the level set equation if Γ curve
could move in the normal direction with speed v.
The relation between level set function and level set
equation is illustrated in Equation(2).

∂ϕ

∂t
= v|∇ϕ|. (2)

The work presented in [13] used level set method for
image and volume segmentation of AAA. This method
was used in order to define the static and evenly spaced
mesh in the image or volume [13]. As previously
mentioned, the values of each point in the mesh are
based on the value of evolving curve, (Γ curve). The
points within the Γ curve were given negative value
while the points outside the curve were positive value.
The mesh values then were updated using the speed
function (Level set equation). This equation is shown
in Equation (3) [13]. In this equation (3), ϕt is a matrix
of mesh values at time t , F is the speed function and
5 is a suitable spatial difference operator.

ϕt+1 + F | 5ϕt |= 0 (3)

In general, a speed function can be dependent on
several factors, these factors in segmentation applica-
tions can be an Advection term which is a constant
value, a curvature term based on the zero level set
and last term based on image or volume(Concerning
the edges of the shape)[13]. The second and third
factors, curvature and image force are considered in
accordance to the zero level set only. These values
should be calculated for each mesh point, the mesh
update should be considered as well. To solve this
problem the value at any given mesh point is defined
based on the value of the nearest point in the zero level



set. The proposed approximation in order to find the
value of the two terms is computationally expensive.
Due to this reason the authors proposed to use the
narrow band with the level set method. This option
reduced the computational cost by updating the mesh
in an area restricted to the zero level set. In this method
the mesh is updated after few steps with respect to time
while the zero level set is accessing the points which
were not updated [13]. The proposed 3D level set
method in [13] was used to represent the 2D surfaces
in 3D space [13]. In order to use the level set method the
speed function was defined based on volume data from
CT images, which is expressed in Equation 4. Term F
is the force at the mesh point x, y, F0 is the Advection
force which was set to unity in all the experiments, Fc
is curvature term which is calculated for the nearest
point to x, y, on the zero level set which is x′, y′ and
finally Fi is the image force based on the Gaussian
derivative filter. The Gaussian filter was chosen over
Sobel or Canny edge detectors since it provides better
performance in detecting the weaker edges, it also
allows to detect edges in the exact direction.

F(x, y) = (F0 5 ϕx,y + Fc(x′, y′) 5 ϕx′,y′ )e−Fi(x′,y′) (4)

As it was mentioned previously, the narrow band
update was used to reduce the computation cost, more
over updating only a section of the level set, e.g. 5 slices
per time, made the calculation much more efficient [13].
The order of updating section was obtained using two
methods. In the first method the first slices will be
selected from one end of the mesh, e.g. top. The update
is calculated for this set of slices until the changes in the
mesh in accordance to the zero level set falls below a
threshold. The same procedure will be repeated for the
next set of slices [13]. In the second method the area
of the mesh is changing constantly in order to grow
the segmented area evenly [13]. The first method could
be used for faster computation; however the second
method provides better segmentation [13].

In addition to the mentioned concepts the authors
also used multi resolution analysis (MRA). The im-
plemented method used the volume data to produce
the half resolution in all the directions. The mentioned
method then is applied first to the low resolution data.
The top down approach was considered for segment-
ing the data considering the computational cost into
account. In the next step the obtained result from low
resolution data were scaled up and were used as the
starting point for the algorithm to run on the full
volume data set [13]. The MRA also improves the
computational cost from days to hours on a single
processor machine. It should be considered that the
proposed algorithm could be further speeded up using
multi-processor machines [13].

In the next stage the 3D triangulation surface was
formed. The Marching Cubes algorithm was used to

produce the iso - surfacing with zero value [13]. The
visualization method, iso-surface is a surface that rep-
resents points with the constant value, in this case,
velocity with in a volume of space. In other words,
it represent the level set of continuous speed function
within 3D space [16]. Marching cubes is a popular
method for constructing the iso-surface from a volume
data [16]. This algorithm is using the scalar field, by
considering eight neighbour locations per time. These
eight points provide the imaginary cube. In the next
step a plane figure bounded by the closed path (poly-
gons) which is representing the part of the iso-surface
passing through this cube is obtained. The individual
polygons then will be joined together in order to obtain
the desired surface [17]. Figure 4 shows the example of
triangulations formed using this method. This method
provides the accurate measurement which are currently
measured inaccurately in the slice plane.

Fig. 4: Triangulated surface of the zero level set using
the marching cubes algorithm

The level set method over previous proposed method
has the advantage to provide better and more accurate
results especially in segmenting small features; how-
ever the computational cost is quite high, even with the
mentioned considerations. Due to this fact the author
suggests to combine this method with other methods.
This means to provide the initial segmentation with
faster implementation and improve this segmentation
using the level set method, considering the segmented
data only. This will allow for faster and more accurate
results.

B. AAA Segmentation Using Active Shape Models

As presented in previous sections, the aortic diameter
is an important characteristic that should be evaluated
in order to diagnose AAA. A way to detect this mal-
formation is to compute a 3D reconstruction of the
aorta to estimate location and risks of rupture. After
acquiring a set of 2D CT transverse slices, the aorta
can be segmented on each slice which will allow a three
dimensional reconstruction. A family of methods based
on shape segmentation can be used in order to solve
the aorta reconstruction issues.

Kass et al. proposed a method called "Snake" or



Fig. 5: Four CT slices where the aorta is delimited
manually by an expert (white dots).

Active Contour Models [12]. This method allows to fit a
contour around the object. However, the Active Contour
Models method suffers of different problems:
• It is dependent of the initial "Snake".
• It does not have a good performance when the

objects which have to be segmented are occluded.
In order to solve the last point, Cootes et al. inte-

grated a training phase to acquire pre-knowledge about
the shape of the target object [10]. This method is called
Active Shape Models (ASM) or "Smart Snake". The ASM
method allows a balanced construction between data
fitting and a consistence with the training set.

To apply ASM method on medical images, shapes
proved not to be enough; therefore, Cootes et al. inte-
grated a modelization of the grey level appearance [8].
Bruijne et al. proposed an extension of the last method
where they combined the grey level appearance with
similarity of the adjacent slice [7].

1) Shape Modelling:
• Training Data Set:

The first step to model the shape of the aorta is to
acquire images and manually label them, as shown
in Figure 5 [7].

• Shape Alignment:
All shapes are defined in different reference axes.
They have to be first aligned in the same reference
axis in order to construct a general model. Pro-
custes Analysis can achieve this task as proposed
in [9]. The Procustes Analysis minimizes the dis-
tance between a reference shape and each of the
remaining shapes in the dataset.

• Statistics Computation of Aligned Shapes:
Once all shapes have been aligned, statistics can be
computed in order to model the shape variations.
Each shape x can be decomposed using an eigen
decomposition. x can be decomposed as a sum of
a mean x̄ and a linear combination of eigenvectors
Φ:

x = x̄ + Φb (5)

Φ can be considered as a dictionary; this dictionary
is built during the training phase and is based on
eigen decomposition. The method to construct the
dictionary is the following:

– Compute the mean shape using all the shapes
as:

Fig. 6: Deviation compare to the mean shape moving
independently the six first coefficients of the vector b.
Solid line: mean shape. Dashed line: a variation of

√
λi.

x̄ =
1
N

N∑
i=1

(6)

where xi is the iht landmark of the shape.
– Compute the covariance matrix S as:

S =
1
N

N∑
i=1

(xi − x̄)(xi − x̄)T (7)

– Compute the eigenvectors ϕi from the scatter
matrix S. At this point, any shape x can be
decomposed as:

x = x̄ + Φb (8)

where Φ =
{
ϕ1, ϕ2, ..., ϕn

}
.

– Sorting them and keeping the k eigenvectors
corresponding to the largest eigenvalues λi.
Only a few number of eigenvectors can be
used to approximate each shape as:

x ≈ x̄ + Φb (9)

where Φ =
{
ϕ1, ϕ2, ..., ϕk

}
.

– k is determined as:

k∑
i=1

λi ≥ fv
n∑

i=1

λi (10)

where fv is a coefficient of approximation
between 0and1. When fv = 1 → Φ ={
ϕ1, ϕ2, ..., ϕn

}
. When fv = 0→ Φ = {∅}.

Figure 6 presents the deviation compared to the
mean shape moving independently of the six first
coefficients of the vector b.

2) Gray-level appearance modelling: In order to localize
the object, not only the shape of the object is important
but also the appearance. In order to compute this
model, a window is defined around each landmark
of size kn × kt where n means normal to the edge
and t means transversal to the edge. Values inside the



Fig. 7: Results using automatic segmentation. Dot line
is the manual segmentation while the other is the
automatic segmentation

window correspond to the first derivative of the image
around the landmark considered; Bruijne presents sev-
eral coefficients [7]. However, only coefficients giving
the best results will be presented which is the sum
of absolute intensity differences between sample and
reference patches:

AD =

kn×kt∑
x=0

= |Is(x) − Ir(x)| (11)

where Is is the sample image and Ir is the reference
image. This coefficient is performed for several resolu-
tions.

3) Model fitting: The initialization is done by drawing
the shape by hand. Then for the adjacent slice, the pre-
vious contour found is used as initialization. In order
to find new boundaries, a multiresolution analysis is
performed from coarse to fine resolution to have more
accuracy at each scale and find the sub motion. At each
scale and for each landmark, the sample patch is moved
along the normal and the sum of absolute intensity
differences between sample and reference patches is
computed (Equation (11)). The purpose is to minimize
this coefficient. This operation is done N times or until
that the coefficient is small enough. Once that the new
shape is found, the vector b can be computed as:

b = ΦT(x − x̄) (12)

Results of this automatic segmentation are presented
on the figure 7.

IV. Magnetic Resonance ImagingModalities

A. Gadolinium-enhanced MRI
Although MRI is an imaging modality that has been

widely used to retrieve anatomical and physiological
information of a patient, its use in vascular imaging is
limited due to the flow artifacts generated in different
pathologies; aneurysms usually present a slow, swirling
flow, whereas in stenotic vessels the flow can be tur-
bulent [2]. The injection of gadolinium, a paramagnetic
contrast agent, to the patient’s blood flow shortens the
T1 relaxation time of blood, making it easier to distin-
guish it from the surrounding tissues. Prince et al.
[2] reported a correct classification of aneurysms when
experts were shown contrast-enhanced MR images; the
size of the aneurysm measured on MR images was

within 3 mm of CT image measurements and within
5 mm of ultrasound measurements [2]. Figure 8 shows
the agreement between the measured AAA size in each
imaging modality. The character of the aneurysms was
also appropriately identified: no false-positive or false-
negative results for aortic rupture, aortic dissection or
inflammatory aneurysms were determined from the
MR images [2].

Fig. 8: MRA AAA diameter measurements versus CT
(square) and ultrasound (triangle)

Figure 9 shows two gadolinium-enhanced images (A
and C) and a conventional aortogram (B and D) of
a abdominal aortic aneurysm. It can be seen that the
blood vessels have a higher intensity value than the
surrounding tissues; in Figure 9A) there is a major
enhancement of the arteries with respect to the over-
lapping veins, due to the contrast agent flow. From
these images it can be seen that there is an agreement
between the anatomic characteristics found in the MR
images and the aortograms. The whole aneurysm can
be seen on a single large field-of-view image, which
cannot be achieved using angiographic images because
of the large concentrations of iodinated contrast agent
that are required [2]. On the other side, gadolinium has
the advantage of being safe to use in patients with renal
insufficiency because it has no known side effects and
no nephrotoxicity [2].

Therefore, it was concluded in [2] that gadolinium-
enhanced MRA provides sufficient anatomic detail to
detect all aneurysms. Still there exist some limitations,
inherent to MR imaging, when wanting to image pa-
tients with pacemakers and other implants or when
renal artery lesions are to be evaluated. Fortunately,
gadolinium-enhanced MRA does not interfere with
other imaging modalities, that can be done immedi-
ately afterwards, and is therefore an imaging modality
that greatly serves for preoperative evaluation of AAA.



Fig. 9: A. Gadolinium-enhanced MRA B. Conven-
tional Aortogram (Xray) C. Time of Flight MRA
with Gadolinium-enhancement D. Conventional Lat-
eral Aortogram

B. Diffusion-weighted MRI
Orta et al. reported the use of diffusion-weighted

MRI to diagnose a particular type of aneurysm, in-
flammatory abdominal aortic aneurysm [1]. The MR
contrast-enhanced images, where soft tissue surround-
ing the blood vessel appeared enhanced, suggested
IAAA; but DW-MRI confirmed the diagnosis. DW im-
ages, that revealed a hyper-intensity surrounding the
aorta, were of great importance to finally determine
the inflammatory nature of the disease [1].

Figure 10 shows the imaging studies done to the
patient [1]. Figure 10A) is a T1-weighted MR image that
reveals an unusual enlargement of the spleen and a di-
lation of the abdominal aorta, as shown by the arrows.
The inflammatory nature of the disease is depicted
by the enhancement of the soft tissue after contrast
injection in Figure 10B). These findings were confirmed
using DW-MR imaging, where the inflammatory tissue
is shown by the arrows as a high-intensity region in
Figure 10C). Finally, Figure 10D) shows the region
where the ADC was computed; it yielded a value of
1.24 ×10−2mm2/s, which is consistent with a restricted
diffusion due to inflammation.

It can therefore be concluded that DW-MRI is an
imaging modality that can be used to study abdominal
aortic aneurysms, it has the advantage of being able
to quantitatively determine the inflammatory nature of
the aneurysm [1]. In conjunction with US, CT or MRI,
it can help determine the appropriate preoperative
management and surgery planning.

V. MR Image Processing

Once the images have been acquired and AAA is
suspected, appropriate image post-processing methods
should be chosen in order to aid the physician emit a
diagnosis. In an AAA disease, it is important quan-
titatively measure the vessel diameter; automatically
detecting the aortic contours would be a first step in
segmenting the vessel to then proceed to a diameter
measurement. This section presents two segmentation
methods applied to MR images. The first method is a
Markovian method evolving into an implicit contour
segmentation method, wherease the second method

Fig. 10: Axial MR Images of IAAA. A. Fat-saturated
T1 image B. Post-contrast fat-saturated T1 image C.
Diffusion-weighted image D. ADC computation on
ROI on aortic wall

was based on a graph-based image segmentation ap-
proach.

A. Markovian Method for Aortic Segmentation

Jodoin et al. presented in [3] a Markovian method
that evolves into an implicit active contour segmenta-
tion method. This method minimizes an energy func-
tion that allows for a simple and fast Markov Random
Field implementation while including a parameter for
curve smoothness that achieve a level-set-like active
contour evolution. Given two random fields mod-
elling the segmentation labels and the input image, X
and Y with realizations x and y, the grey scale feature
of y is used to compute x such that pixels with similar
intensity values are grouped in the same class [3]. The
criterion for segmentation is the Maximum a Posteriori

Probability (MAP) given by x′ = argmaxx(
P(y|x)P(x)

P(y)
)

[3]. Assuming they are all Gibbsian distributions, then
the MAP is given by Equation 13, where U is the
likelihood energy function and V is the prior energy
function.

x′ = argminxΣsεSU(xs, ys) + Vηs (xs) (13)

The likelihood energy function is taken to be the
natural logarithm of a Gaussian and the prior energy
function that is evaluated and minimized in shown in
Equation 14.

Vηs (xs) = α(
card(ηs)

Σtεηsδ(xs, xt)
− 1) (14)

Here, x represents the segmentation label, ηs the
number of neighbours of site s and δ(xs, xt) is the
Kronecker delta that returns 1 when xs = xt and 0
otherwise. Therefore, a pixel s will switch classes if and



only if at least one of its neighbours has already been
assigned the new class label [3]. This is exemplified
in Figure 11; Figures 11 A) and 11 C) show the initial
contours and label fields of the image. Because points
c and d are located in uniform regions, their labels will
not change; on the other hand, points a and b, located
near a boundary, will change their labels and will cause
the regions to grow or shrink in order to adapt to the
image contours.

Fig. 11: A. Contour Initialization. B. Final Contour. C.
Initial Label Field D. Final Label Field

Extension from a two-dimensional segmentation to a
three or four dimensional one is relatively simple and
greatly depends on the definition of the neighbourhood
ηs. For a 3D segmentation, neighbours are located in the
current analysed image, k, and on the stack images k-
1 and k+1. The extension to 4D is done by including
neighbours on temporally adjacent stacks of images,
i.e. image stacks at times t, t-1 and t+1. Also, in
order to account for the different grey scale distribu-
tions of each image stack, a mixture of two Gaussians
was associated to each image stack; each class would
then be linked to time-dependent Gaussian mean and
standard deviation parameters [3]. Figure 12 shows
the result of a three-dimensional segmentation of the
abdominal aorta and the vessel reconstruction on the
leftmost side; the initialization was done manually by
a physician on the first image of each stack. As can
be visually evaluated from the the right-hand images,
the algorithm accurately segments the blood vessel.
Figure 13 depicts the extension of the algorithm to
four dimensions, also accurately segmenting the aorta
at different time frames.

As could be seen from the results, the method was
able to accurately segment the blood vessels. Further
steps in assessing AAA disease could include the
determination of a maximum lumen diameter and a
comparison with predefined diameter ranges in order
to plan the appropriate treatment or surgery.

Fig. 12: Results for 3D Segmentation and Wall Vessel
Reconstruction

Fig. 13: Results for 4D Segmentation at Different Time
Frames

B. A Graph-Theoretic Approach for Aortic Segmentation

Sonka et al. implemented a pre-segmentation algo-
rithm consisting of a fast marching level set method
on four-dimensional MR aortic images to obtain an
approximation of the aortic surface [3]. From these
results, a center line was computed by skeletonization
of the surfaces. Finally, through a novel 4D border
detection algorithm, an accurate blood vessel surface
segmentation was achieved.

The algorithm implemented by Sonka et al. was
based on a graph-based image segmentation approach
[5]. Here, a weighted graph G = (V,E) represents the
image pixels as nodes in set V and the neighbourhood
system in an arc set E; there is a inherent cost func-
tion in each arc 〈vi, v j〉. Graph-cuts aim to partition
a weighted graph into two disjoint subsets [5]. They
minimize the cost function, ε( f ), through the design
of node sets Gst containing source, s, and sink, t, label
nodes. With an appropriate design of a energy function,
a minimum s-t cut can segment a region of interest in
an image [5].

Graph-based image segmentation proved to accu-
rately segment vascular contrast-enhanced MR images;
Figure 14 A) shows the original images, Figure 14 B)
the manual segmentation and Figures 14 C) and D) the
automatic segmentation.

The algorithm’s performance was evaluated by com-
paring the results with those of manual segmentation
done by a physician. Figure 15 shows the mean and
standard deviation values for the positioning errors of
the segmentation; the error was defined as the shortest
distance of the automatic and the manual segmentation
[4].



Fig. 14: Segmentation of MR arterial walls and plaque

Fig. 15: Positioning Errors for Aortic Segmentation

VI. Conclusions

As has been shown in the previous sections, there
is a strong interest in exploiting the capabilities of
the medical imaging modalities to diagnose abdominal
aortic aneurysm. The choice of the imaging modality
is the first step that should be considered in order
to study AAA; CT and MRI are important imaging
modalities that provide anatomical details of the dis-
eased vessel. Currently, the modality of choice in most
institutions is CT with an iodinated contrast medium,
especially in emergency patients. Though it is useful to
show the vessel anatomy, MRI has proven to be more
reliable when wanting to detect inflammatory changes
in the lesion. They are both non invasive imaging
techniques but CT makes use of ionizing radiation and
employs a contrast agent inappropriate for patients
with renal insufficiency. A diagnose based on both CT
and MR images will probably be a more accurate one
as the anatomical and physiological information of the
disease will be complemented.

After the appropriate images are shown there are
several post-processing techniques that aim to aid the
physician to diagnose AAA. Most of these methods rely
on segmentation of the aorta and a later measurement
of the vessel diameter. Level sets and active shape
model methods have been used with good results in
CT images; Markovian and graph-theoretic approaches
have been developed for MR images. Either of these
methods could be extended to the other modality,
though not much research has been done on it. It would
be interesting to perform a study in which the several
segmentation methods are used on CT and MR in order

to evaluate the methods and the imaging modalities in
a better way.
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