
1

Coursework Assignement 2 : Algorithms for
colour compression and segmentation

Guillaume Lemaitre - ID student : 09295005
Heriot-Watt University, Universitat de Gerona, Universite de Bourgogne

g.lemaitre58@gmail.com

Abstract—Compression and segmentation are two main
fields in Digital Image Processing area. Compression is
generally used for commercial purposes and more precisely
to store data. Segmentation is more a specific method. It is
used to help or take automatic decisions in miscellaneous
fields like medical imaging, autonomous navigation, etc. In
this paper, we study the both fields. Firstly, we present
an image colour compression method based on Run-
Length Encoding algorithm (RLE). Secondly, we present
two simple methods to segment colour image using local
maximum of histogram in HSV colour space.

I. I NTRODUCTION

In Digital Image Processing, compression and seg-
mentation are two important fields. Compression is
studied to improve image storage and keeping the best
possible quality. Researches on the compression field
are important. Multiple techniques were developed like
JPEG, GIF, PNG, RLE. Regarding segmentation, the
principle is to simplify image and only keep important
feature. Segmentation can be used in different fields
like medical imaging, autonomous navigation. Many
colour segmentation have been proposed using Hue,
Saturation, Value colour space [?], [?] or on histogram
treatment [?]. This paper is organized as follow: Section
2 presents an image colour compression method based
on Run-Length Encoding algorithm (RLE). First, we
introduce an overview of the generic RLE. Then, we
explain the principle of the implementation for colour
images. Finally, we show results of this method and
discuss about possible improvements. In the section 3,
two simple methods to segment colour image using
local maximum of histogram in HSV colour space are
presented. For each method, we will explain the method,
present the results and discuss about the improvements.
A conclusion is given in the last section.

II. COMPRESSION

In this part, we present an algorithm allowing to
compress colour images using Run-Length Encoding

algorithm (RLE).

A. Overview

RLE algorithm is the easiest method to encode any
type of data. The aim of this method is to group identical
values. So, for this method, a new variable is introduced:
the variable representing the number of repetition of one
value. Basically, in this encoding, we represent a doublet
of parameters as follow:

[number of repetition— value]

For instance, we have this data row:

1 1 1 1 1 1 0 0 0 1 1 0

Table I
DATA ROW NOT COMPRESS

The following array represents the encoding data using
RLE algorithm:

6 1 3 0 2 1 1 0

Table II
REPRESENTATION OF COMPRESS DATA USINGRLE ALGORITHM

We can apply this method to encode colour images.
We present this algorithm in the next subsection.

B. Implementation on colour images

First, we remind that a colour image is basically
coding in Red, Green and Blue (RGB) colour space. To
encode, we must see each consecutive triplet [R,G,B] in
the colour image. In the generic RLE algorithm, if and
only if several values are strictly equal, we can group
them. We cannot use this strict equality for encoding

colour images. Indeed, find several identical consecutive
values is impossible. That is why, we should add an
homogeneity criterion.

1) Homogeneity criterion:Homogeneity criterion al-
lows to transform the strict equality in inequality. For
a colour image in RGB, we decided to use Euclidean
distance between two triplets [R,G,B]. The equation
representing this distance is as follow:

Dpq =
√

(Rp − Rq)2 + (Gp −Gq)2 + (Bp −Bq)2 (1)

After to have computed the Euclidean distance, we
compare this distance to a thresholdThc.

Dpq < Thc → C = True (2)

Dpq ≥ Thc → C = False (3)

whereC is a bool variable indicating the result of the
logic equation allowing to group the two pixels. We
can note that moreThc is big, more we compresse. In
the section II.2.D., we will discuss about the value of
the thresholdThc. We can apply the RLE algorithm on
colour images with two different ways. We present this
method in the following section.

2) Vertical compression:For a vertical compression,
we can apply the RLE algorithm row by row. Hence,
we use equations (??), (??) and (??) and compare two
triplets of pixels of two different columns for each row.
The code representing this encoding is in appendix.

3) Horizontal compression:For a horizontal com-
pression, we can apply the RLE algorithm column by
column. Hence, we use equations (??), (??) and (??)
and compare two triplets of pixels of two different rows
for each column. The code representing this encoding is
in appendix.

C. Results

In this part we will present visual results and statiscal
results.

1) Visual results:

a) Vertical compression:Fig. ?? represents the
compression on a colour chart picture. All triplets of
pixels of each region have the same value. The compres-
sion of this image is maximum we do not have change
between encoding and decoding. Fig.?? represents the
compression on a real picture. We can note that more we
try to compress, more the compressed image is different
to the original image.

Original image

Compressed image with compression ratio = 74
MSE = 0

PSNR = Inf

Compressed image with compression ratio = 74
MSE = 0

PSNR = Inf

Compressed image with compression ratio = 74
MSE = 0

PSNR = Inf

Figure 1. Results of vertical compression with different threshold on
”colour chart.bmp”

Original image

Compressed image with compression ratio = 0.74854
MSE = 4.6214

PSNR = 41.4831

Compressed image with compression ratio = 1.3474
MSE = 158.7228
PSNR = 26.1244

Compressed image with compression ratio = 2.0317
MSE = 415.5327
PSNR = 21.9448

Figure 2. Results of vertical compression with different threshold on
”peppers.png”

Original image

Compressed image with compression ratio = 40
MSE = 0

PSNR = Inf

Compressed image with compression ratio = 40
MSE = 0

PSNR = Inf

Compressed image with compression ratio = 40
MSE = 0

PSNR = Inf

Figure 3. Results of horizontal compression with differentthreshold
on ”colour chart.bmp”

Original image

Compressed image with compression ratio = 0.79012
MSE = 3.3735
PSNR = 42.85

Compressed image with compression ratio = 1.3617
MSE = 169.4984
PSNR = 25.8391

Compressed image with compression ratio = 1.8462
MSE = 711.0566
PSNR = 19.6118

Figure 4. Results of horizontal compression with differentthreshold
on ”peppers.png”

2

”colour chart.bmp” ”Peppers.png”
Vertical 74 1.3474

Horizontal 40 1.3616

Table III
COMPRESSION RATIO

b) Horizontal compression:Fig. ?? represents the
compression on a colour chart picture. All triplets of
pixels of each region have the same value. The compres-
sion of this image is maximum we do not have change
between encoding and decoding. Fig.?? represents the
compression on a real picture. We can note that more we
try to compress, more the compressed image is different
to the original image.

2) Compression ratio:The compression ratio rep-
resents the ratio between the original image and the
compressed image. We can formalize as follow:

CR =
nbpoim

nbpcim
(4)

where nbpoim is the size of the original image and
nbpcim is the size of the compressed image. This fol-
lowing results were computed with a thresholdThc =
0.0005. Tab. ?? presents the results of vertical and
horizontal encoding on both images. For the colour chart
image, we can see a large difference between the both
encoding. Basically, we have a perfect compression on
this image. This image is more width than high. Hence,
the perfection being perfect, the compression ratio is
better if we compress the biggest side. On a real image
(”peppers.png”), we can note that the compression ratio
between vertical and horizontal compression is closed
but that the compression ratio is not very high.

3) Mean square error (M.S.E.) and Peak Signal on
Noise Ratio (P.S.N.R.):Mean square error (M.S.E.)
represents the difference between the orignal image and
the compressed image. We used Euclidean distance to
compute the MSE. We can formalize as follow:

MSE =
1

r.c.d

d−1
∑

k=0

r−1
∑

i=0

c−1
∑

j=0

(P (i, j, k)−Q(i, j, k))2 (5)

Where r is the number of row,c is the number of
column, d is the number of depth,P is the pixel of
the original image andQ is the pixel of the compressed
image. However, Peak Signal on Noise Ratio (P.S.N.R.)
allows to measure the quality of the reconstruction of
the compressed image. We can formalize as follow:

PSNR = 20 log
255

MSE
(6)

”colour chart.bmp” ”Peppers.png”
M.S.E.
vertical 0 158.7228
M.S.E.

horizontal 0 1.3474
P.S.N.R.(dB)

vertical Inf 26.1244
P.S.N.R.(dB)

horizontal Inf 25.8391

Table IV
RESULTS OFM.S.E.AND P.S.N.R.

0 0.02 0.04 0.06 0.08 0.1
10

15

20

25

30

35

40

45
PSNR in function to the threshold Th

Value of threshold Th

P
S

N
R

Figure 5. P.S.N.R. with different value of thresholdThc on ”pep-
pers.png”

This following results were computed with a threshold
Thc = 0.0005. Typical values for the PSNR in lossy
image compression are between 30 and 50 dB [?] [?].
We show results of experimentation on two images in
the table??. We can see that for the chart image, the
value of P.S.N.R. is infinite so the compressed image
is exactly the same than the original image. However,
we can see that the result is not good. The image is so
compressed so the thresholdThc is so high. In the next
section, we will try to improve the compression and fix
the value of the threshold empirically.

D. Discussion

Two ways can be followed to improve this technique
of compression.

1) Improvement of compression:First, we saw that
we can see a difference of compression between vertical
and horizontal compression. Basically, we should choose
vertical compression when the value of width of image
is bigger than the value of high of image. Unlike vertical
compression, horizontal compression can be used when
the value of high of image is bigger than the value of
width of image.

2) Improvement of homogeneity criterion:In this part,
we try to find a thresholdThc in an emperical way. Fig.
??, ?? and?? show the P.S.N.R. with different value of
thresholdThc. The minimum value acceptable for the

3

0 0.02 0.04 0.06 0.08 0.1
10

15

20

25

30

35

40

45
PSNR in function to the threshold Th

Value of threshold Th

P
S

N
R

Figure 6. P.S.N.R. with different value of thresholdThc on ”earth.jpg”

0 0.02 0.04 0.06 0.08 0.1
10

15

20

25

30

35

40

45
PSNR in function to the threshold Th

Value of threshold Th

P
S

N
R

Figure 7. P.S.N.R. with different value of thresholdThc on ”pooh.jpg”

P.S.N.R. is 30 dB. With this value we maximize the
compression. Empirically, we can decide that:

Thc = 0.0003

III. SEGMENTATION

We present two simple methods to segment colour
image using local maximum of histogram in HSV colour
space.

A. Local maximum detection

First, we will present a tool allowing to detect local
maximum. We use the following function to detect
maximum:

Detmax(x) =

N

2
∑

i=−N

2

dgσ(i +
N

2
)× f ′(x− i) (7)

with:

dgσ(x) =
−x

√
2πσ3

exp−
gσ(x)

2

2σ2
(8)

where:

gσ(x) =
x

√
2πσ

exp−
x2

2σ2
(9)

and where:

f ′(x) = gσ(x) ∗ f(x) (10)

f ′(x) =

N

2
∑

i=−N

2

gσ(i +
N

2
)× f(x− i) (11)

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6 Simple gaussian function

Magnetude

x

(a) Gaussian function with
detection of the maximum

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

7 Function allowing the maximum detection

x

y

(b) Function allowing the
detection

Figure 8. Maximum detection on a simple Gaussian function

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Histogram of the distribution of hue color

Number of pixels

In
te

ns
ity

 le
ve

l

(a) Histogram with maximum
detection

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

4
x 10

4 Function allowing the maximum detection

x

y

(b) Function allowing the
detection

Figure 9. Maximum detection on histogram

wheref(x) is the input signal andN represents the size
of the mask. We find maximum when:

Detmax(x) = 0 (12)

We present two examples where we perform the maxi-
mum detection. First, a basic example presented in Fig.
??. We detect the maximum (Fig.??) usingDetmax(x)
function (Fig.??). The maximum is detected when the
equation?? is verified. The second example presents
a detection on an histogram (Fig.??). The function
Detmax(x) is presented on Fig.?? and the result is
presented on Fig.??.

B. Hue segmentation

In this part, we present one method based on detection
of maximums in the hue histogram of the image. We use
HSV space colour because it is more representative of
the Human colour perception than RGB space colour.

1) Method: We assume that in colour image, each
object is characterised by its hue. The aim of this
method is to detect maximum on a histogram using
the tool presented in the section III.A. First, we must
compute the histogram of hue. Three steps are required:
Step 1 : Convert RGB image (Fig.??) in HSV image
(Fig. ??).
Step 2 : Split HSV image and keep hue channel (Fig.
??).

4

(a) RGB Image (b) HSV Image

(c) Hue Image

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Histogram of the distribution of hue color

Number of pixels

In
te

ns
ity

 le
ve

l

(d) Histogram distribution of
hue image

Figure 10. Creation of histogram distribution of hue

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Histogram of the distribution of hue color

Number of pixels

In
te

ns
ity

 le
ve

l

(a) Result of maximum
detection

0

2000

4000

6000

8000

10000

12000

14000

16000

Distribution of segmented image

Intensity Level

N
um

be
r

of
 p

ix
el

s

0 0.2 0.4 0.6 0.8 1

(b) Histogram distribution of
image segmented

(c) Image segmented

Regions: 1028

(d) Image labelled

Figure 11. Creation of segmented image

Step 3 : Compute hue histogram (Fig.??).
The second part is to find maximum in the histogram

and group all pixels in the nearest peak detected. Two
steps are required:
Step 1 : Detect local maximum on the histogram (Fig.
??).
Step 2: For each remaining bins, compute the euclidean
distance between it and each peak. The minimal distance
represents the nearest peak (eq.??). We must map
all pixels which are intensity of the current bin to
the intensity to the nearest peak. For this, we accross

(a) Original Image (b) Segmented Image

Regions: 1028

(c) Labelled Image

Figure 12. Results of segmentation on peppers image

the image and for each pixel having the intensity
of the current bin, we map to the intensity of the
neareast peak. We obtain an segmented image (Fig.
??) with a new distribution limited to the peaks (Fig.??).

Dmin(bx, pi) = min(bx − pi)2 (13)

wherebx is the intensity of current bins andp(i) is the
intensity of the maximum of indexi.

2) Results:We present on this several segmentation
on different images.

a) Peppers image:Results presented in Fig.?? are
good. Peppers image is colourful and find peaks in hue
space is not difficult.

b) Earth image:Results presented in Fig.?? show
the weak to use hue colour space only. Indeed, this
picture is not colourful, so it’s difficult to find some peak
inside hue colour space. Saturation and value can help
to have a better classification.

c) Lake-Mountain image:Segmentation are not
working in Fig. ??. Avoid saturation and value space is
an error.Segmentation are not working in Fig.??. Avoid
saturation and value space is an error.

d) Parrots image:Like peppers image, segmenta-
tion is working in Fig.??.

e) Pooh image:Fig. ?? presents an image with
noise. We can see that the algorithm is sensitive to the
noise and don’t give good result.

5

(a) Original Image (b) Segmented Image

Regions: 2735

(c) Labelled Image

Figure 13. Results of segmentation on earth image

(a) Original Image (b) Segmented Image

Regions: 139

(c) Labelled Image

Figure 14. Results of segmentation on lake image

3) Discussion:We can conclude that the basic algor-
tihm give some good results on colourful images without
noise. However, real images are not only colourful. In
the following section, we introduce a method based on
HSV colour space and not only on the hue space.

C. Hue Saturation Value (HSV) segmentation

We used every step saw in the previous section III.B.
Moreover, we have an additionnal work on saturation and
value space. which allow to correct the segmentation on
non-colourful images.

(a) Original Image (b) Segmented Image

Regions: 370

(c) Labelled Image

Figure 15. Results of segmentation on parrots image

(a) Original Image (b) Segmented Image

Regions: 2963

(c) Labelled Image

Figure 16. Results of segmentation on pooh image

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000
Detection of maximum in saturation space

Intensity level

N
um

be
r

of
 p

ix
el

(a) Maximum detection on the
distribution histogram of

saturation

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Detection of maximum in value space

Intensity level

N
um

be
r

of
 p

ix
el

(b) Maximum detection on the
distribution histogram of value

Figure 17. Maximum detection on saturation and value space

6

(a) Original Image (b) Segmented Image

Figure 18. Results of segmentation on peppers image

(a) Original Image (b) Segmented Image

Figure 19. Results of segmentation on earth image

1) Method on HSV colour space:Like in the section
III.B., we segment image with hue space. Moreover, we
perform the same step on saturation and value spaces. In
fact, we find maximum in the histogram distribution of
saturation and value, and group all pixels in the nearest
peak detected. Two steps are required:
Step 1 : Detect local maximum on the histogram
distribution of saturation (Fig.??) and the histogram
distribution of value(Fig.??).
Step 2: For each remaining bins, compute the euclidean
distance between it and each peak. The minimal distance
represents the nearest peak (eq.??). We must map all
pixels which are intensity of the current bin to the
intensity to the nearest peak. For this, we accross the
image and for each pixel having the intensity of the
current bin, we map to the intensity of the neareast peak.
The next step is to merged nearest peaks in saturation
and value space. We use Euclidean distance between two
peaks and if the distance is superior to an thresholdTp,
we map the smallest distribution of the two peaks to the
biggest distribution of the peaks. After experimentation,
we chooseTp = 60.

2) Results:We present on this several segmentation
on different images.

a) Peppers image:Results presented in Fig.?? are
better than the last method but provide more regions.

b) Earth image: Unlike the previous method, the
segmentation in Fig.?? works.

(a) Original Image (b) Segmented Image

Figure 20. Results of segmentation on lake image

(a) Original Image (b) Segmented Image

Figure 21. Results of segmentation on parrots image

c) Lake-Mountain image: Unlike the previous
method, the segmentation in Fig.?? works.

d) Parrots image: In this case (Fig.??), first
method segmentation give best results.

e) Pooh image:Unlike the previous method, the
segmentation in Fig.?? works and is less sensitive to
the noise.

3) Discussion:This last method fix the problem that
we met with the method based only on hue space.

IV. CONCLUSION

Algorithms proposed in this paper are very simple and
can obtain good results. We introduced first a method of
compression based on Run-Length Encoding algorithm.
Then we proposed a simple method to segment colour
image based on detection on maximum in distribution
histogram in HSV colour space. First, we presented a
method based only on hue space and after that a method

(a) Original Image (b) Segmented Image

Figure 22. Results of segmentation on pooh image

7

based on HSV colour space allowing to fix problem met
with the previous method.

V. REFERENCE

REFERENCES

[1] GONZALEZ R.C. and WOODSR.E., 2007.Digital Image Process-
ing, 3 edition Prentice Hall 3.

[2] SURAL S., QIAN G. and PRAMANIK S., 2002.Segmentation and
histogram generation using HSV color space for image retrieval,
IEEE ICIP.

[3] TSE-WEI C., YI -L ING C. and SHAO-Y I C., 2008.Fast Image
Segmentation Based on K-Means Clustering with Histograms in
HSV Color Space, IEEE, MSSP.

[4] SHAFARENKO L., PETROU M. and KITTLER J., 1998.Histogram-
Based Segmentation in a Perceptually Uniform Color Space, IEEE,
TOIP.

[5] THOMOS N., BOULGOURIS N.V. and STRINTZIS M.G., 2006.
Optimized Transmission of JPEG2000 Streams Over Wireless
Channels, IEEE, TOIP.

[6] X IANGJUN L. and JIANFEI C., 2007. Robust Transmission of
JPEG2000 Encoded Images Over Packet Loss Channels, ICME.

8

APPENDIX A
CODE

A. Code to track on video sequence

%Motion estimation and tracking
close all;
clear all;
clc;

%Parameter
nb_images = 10;

%Read image and convert in graye
im{1} = rgb2gray(imread('urban\video_0020.bmp'));
im{2} = rgb2gray(imread('urban\video_0021.bmp'));
im{3} = rgb2gray(imread('urban\video_0022.bmp'));
im{4} = rgb2gray(imread('urban\video_0023.bmp'));
im{5} = rgb2gray(imread('urban\video_0024.bmp'));
im{6} = rgb2gray(imread('urban\video_0025.bmp'));
im{7} = rgb2gray(imread('urban\video_0026.bmp'));
im{8} = rgb2gray(imread('urban\video_0027.bmp'));
im{9} = rgb2gray(imread('urban\video_0028.bmp'));
im{10} = rgb2gray(imread('urban\video_0029.bmp'));

%Detection corners on the first image
[cim, cimdata, r, c] = harrisC('urban\video_0020.bmp' ,1,1000,35,1);

%Preallocate
u=zeros(size(r));
v=zeros(size(r));
display = ones(size(r));

%For each image, we will track the corners features
for n_im = 2:nb_images

%For each corner we compute the Lucas Kanade Optical Flow
for k = 1:length(r)

[u(k) v(k) display(k)]=KLT(im{n_im-1},im{n_im},r(k),c (k),4);
c(k) = u(k) + c(k);
r(k) = v(k) + r(k);

end

hold off;
figure;
imshow(im{n_im}+40);
for i = 1:length(r)

if (display(i))
hold on;
plot(c(i),r(i), 'r+');

end
end
disp('Press me');
pause;

end

B. Code to track features on two images

%Motion estimation and tracking
close all;
clear all;
clc;

%Parameter
nb_images = 2;

9

%Read image and convert in graye
im{1} = imread('scene1.png');
se = translate(strel(1), [0 10]);
im{2} = imdilate(im{1}, se);

%Detection corners on the first image
[cim, cimdata, r, c] = harrisC('scene1.png' ,1,1000,35,1);

%Preallocate
u=zeros(size(r));
v=zeros(size(r));
display = ones(size(r));

%For each image, we will track the corners features
for n_im = 2:nb_images

%For each corner we compute the Lucas Kanade Optical Flow
for k = 1:length(r)

[u(k) v(k) display(k)]=KLT(im{n_im-1},im{n_im},r(k),c (k),4);
c(k) = u(k) + c(k);
r(k) = v(k) + r(k);

end

hold off;
figure;
imshow(im{n_im}+40);
for i = 1:length(r)

if (display(i))
hold on;
plot(c(i),r(i), 'r+');

end
end
disp('Press any key!!');
pause;

end

C. Lucas Kanade Algorithm modified

function [u, v,limit] = KLT(im1, im2, wincx,wincy,windowSize)

%LucasKanade lucas kanade algorithm, without pyramids (on ly 1 level);

%REVISION: NaN vals are replaced by zeros
u=0;
v=0;

index=50;
limit = 1;

halfWindow = floor(windowSize/2);
for k=1:index

%Tranlate the image with the previous translation vector fi nd by iteration
se=translate(strel(1),[-v -u]);
im2trans=imdilate(im2,se);
%Compute derivatives
[fx, fy, ft] = ComputeDerivatives(im1, im2trans);

%Check if the corner is still on the boundary of the image
if (wincx-halfWindow < 1)

limit = 0;
break ;

end
if (wincy-halfWindow < 1)

limit = 0;
break ;

end
if (wincx+halfWindow > size(im1,1))

10

limit = 0;
break ;

end
if (wincy+halfWindow > size(im1,2))

limit = 0;
break ;

end

curFx = fx(wincx-halfWindow:wincx+halfWindow, wincy-ha lfWindow:wincy+halfWindow);
curFy = fy(wincx-halfWindow:wincx+halfWindow, wincy-ha lfWindow:wincy+halfWindow);
curFt = ft(wincx-halfWindow:wincx+halfWindow, wincy-ha lfWindow:wincy+halfWindow);

curFx = curFx';
curFy = curFy';
curFt = curFt';

curFx = curFx(:);
curFy = curFy(:);
curFt = -curFt(:);

A = [curFx curFy];

U = pinv(A' * A) * A' * curFt;

%Test if we finish to converge
if (round(U(1))==0)&&(round(U(2))==0)

break ;
end

u=u+round(U(1));
v=v+round(U(2));
end

u(isnan(u))=0;
v(isnan(v))=0;

%%%
function [fx, fy, ft] = ComputeDerivatives(im1, im2)
%ComputeDerivatives Compute horizontal, vertical and tim e derivative
% between two gray-level images.

if (size(im1,1) 6= size(im2,1)) | (size(im1,2) 6= size(im2,2))
error('input images are not the same size');

end ;

if (size(im1,3) 6=1) | (size(im2,3) 6=1)
error('method only works for gray-level images');

end ;

d_im1=double(im1); d_im2=double(im2);
fx = conv2(d_im1,0.25 * [-1 1; -1 1]) + conv2(d_im2, 0.25 * [-1 1; -1 1]);
fy = conv2(d_im1, 0.25 * [-1 -1; 1 1]) + conv2(d_im2, 0.25 * [-1 -1; 1 1]);
ft = conv2(d_im1, 0.25 * ones(2)) + conv2(d_im2, -0.25 * ones(2));

% make same size as input
fx=fx(1:size(fx,1)-1, 1:size(fx,2)-1);
fy=fy(1:size(fy,1)-1, 1:size(fy,2)-1);
ft=ft(1:size(ft,1)-1, 1:size(ft,2)-1);

11

