
1

Scene Segmentation and Interpretation
Coursework 1.Image Segmentation

Miroslav Radojević, Guillaume Lemaı̂tre
Universitat de Girona

Abstract—Segmentation is an algorithm that subdivides an im-
age into its meaningful constituent regions or objects. Depending
on the approach, segmenting algorithms use basic properties of
image intensity values - discontinuity and similarity. In this work,
region growing segmentation method is implemented and tested
as a segmentation tool for grey and color images.

I. I NTRODUCTION AND PROBLEM DEFINITION

Region growing method groups pixels or subregions into
larger regions based on the predefined criteria for growth.
The basic approach is to start with a set of ”seed” points
and from these grow regions by appending to each seed those
neighbouring pixels that have predefined properties similar to
the seed. Intensity of grey level or color may be used to define
similarity criteria [1]. Common approaches for color image
segmentation are clustering algorithms such as k-means or
Mixture of Principal Components, however, these algorithms
do not take spatial information into account. Furthermore,
clustering algorithms require prior information regarding num-
ber of clusters, which is a difficult or ambiguous task. An
alternative set of algorithms exists which uses color similarity
or intensity similarity and a region-growing approach to spatial
information. Region growing is based on the following prin-
ciples. The algorithm starts with a seed pixel, examines local
pixels around it, determines the most similar one, which is then
included in the region if it meets certain criteria. This process
is followed until no more pixels can be added. The definition of
similarity may be set in any number of different ways. Region
growing algorithms have been used mostly in the analysis of
grey-scale images, however, segmenting a color image using
adequate properties can be accomplished successfully [2].

The task is to implement region growing on given set of
grey-level and color pictures. Segmentation is done sequen-
tially, each time examining neighbouring pixels of a region,
that starts growing from ”seed” points. Those neighbours
that are satisfying criteria of similarity are added to the
region, leaving their own neighbours in the queue for further
examination (Figure II). Neighbourhood is defined as 8-
neighbourhood or 4-neighbourhood, depending on connection
type. This way, region growing satisfies another principle of
region-based segmentation - connectivity. In each case, the
segmentation results should strongly be determined by a tuning
parameter which defines aggregation criteria threshold.

II. A LGORITHM ANALYSIS

Region growing is designed so that it starts from specified
seed points supplied as arguments. In case seed point are
omitted at the input, default value for starting point is (0,0).
An algorithm that would successfully determine seed points

1

2

5

3

48

6

1

9

7

R G B

GR

Fig. 1. Algorithm description scheme

would affect the outcome of the algorithm execution and
quality of segmentation. Outcome depends on position and
number of ”seeds”. Idea is that segmentation starts from
points of interest and sequentially, pixel by pixel, expands
the region by adding those pixels that satisfy the criteria of
similarity (Figure II). Homogeneity criteria for colour image
segmentation can be applied by using different colour spaces
and different metrics. Criteria for similarity can be calculated
using features, such as color intensity (red, green and blue
components), hue, saturation, luminance or chrominance [2]
and appropriate calculation, for instance, statistics, such as
mean or standard deviation, or metrics distance. Calculated
value is compared with threshold in order to obtain condition.

A. Computation of mean and standard deviation

In this section, we will present the calculation of mean and
standard deviation. To compute these statistics, we used rapid
calculation methods allowing to compute mean and standard
deviation only with the last value known of this parameters.

1) Rapid computation of mean:We compute the mean
value with a recursive method as follow:

m̄i,c = m̄i−1,c +
(I(x,y,c) − m̄i−1,c)

nbp
(1)

with initial condition

m̄0,c = 0 (2)

wherenbp is the number of pixels,I(x,y,c) is the intensity of
the pixel in coordinatesx andy for the channelc, m̄i,c is the
mean value of the channelc at the instanti andm̄i−1,c is the
mean value of the channelc at the instanti− 1.

2

2) Rapid computation of standard deviation:We compute
the standard deviation value with a recursive method as follow:

stdi,c =

√

varqi

nbp
(3)

where:

varqi,c = varqi−1,c

+
nbp − 1

nbp
× (I(x,y,c) − m̄i−1,c)

2 (4)

with initial condition

varq0,c = 0 (5)

wherenbp is the number of pixels,I(x,y,c) is the intensity of
the pixel in coordinatesx andy for the channelc andstdi,c
is the standard deviation at timei for the channelc.

B. Criteria

In this section, we will present different criteria that we
used to decide if a pixel belongs or not to a region. First,
we will present the criterion based on ”Euclidean distance”.
Then, we will introduce a method using the mean value and
a threshold. We will conclude with a criterion based on the
standard deviation value of the region and the mean value of
the region.

1) Euclidean distance criterion:We compute the ”Eu-
clidean distance” between the value of the pixel and the mean
value of the region to know if this pixel belongs to the region.
We can formulate this criterion as follow:

D2
p,m̄ = (I(x,y,R) − m̄r,R)

2

+(I(x,y,G) − m̄r,G)
2

+(I(x,y,B) − m̄r,B)
2 (6)

whereI(x,y,c) is the intensity of the pixel at the coordinates
x andy for the channelc andm̄r,c is the mean value of the
regionr of the channelc. The following equation defines the
belonging criterion of a pixel to a region:

Dp,m̄ ≤ threshold ⇒ pixel belongs to R (7)

Dp,m̄ ≥ threshold ⇒ pixel does not belong to R

2) Mean value criterion:We call mean value criterion, a
criterion based on the computation of the mean value of the
region. In fact, we assume that a pixel belongs to the region
if the value of the pixel is inside an interval defined by the
mean value and a coefficient chosen by the user. The figure 2
present this criterion for one dimension. We work in a three
dimensions space with red, green and blue. Hence, we can
formulate the criterion as follow:

(I(x,y,1) ≤ m̄r,1 + k)&&(I(x,y,1) ≥ m̄r,1 − k) (8)

(I(x,y,2) ≤ m̄r,2 + k)&&(I(x,y,2) ≥ m̄r,2 − k)

(I(x,y,3) ≤ m̄r,3 + k)&&(I(x,y,3) ≥ m̄r,3 − k)

whereI(x,y,c) is the intensity of the pixel at the coordinates
x andy for the channelc andm̄r,c is the mean value of the
region r of the channelc. k is a threshold value defined by
the user. To compute the mean, we use the rapid computation
method shown in the section II-A.

Fig. 2. Example of the mean value criterion for one dimension

Fig. 3. Exemple of the standard deviation criterion for one dimension

3) Standard deviation criterion:We call standard deviation
criterion, a criterion based on the computation of the mean
value and standard deviation of the region. In fact, we assume
that a pixel belongs to the region if the value is inside an
interval defined by the mean value andk times the standard
deviation of the region wherek is defined by the user. The
figure 3 presents this criterion for one dimension. We work in
a three dimensions space with red, green and blue. Hence, we
can formulate the criterion as follow:

(I(x,y,1) ≤ m̄r,1 + k × stdr,1) (9)

&&(I(x,y,1) ≥ m̄r,1 − k × stdr,1)

(I(x,y,2) ≤ m̄r,2 + k × stdr,2)

&&(I(x,y,2) ≥ m̄r,2 − k × stdr,2)

(I(x,y,3) ≤ m̄r,3 + k × stdr,3)

&&(I(x,y,3) ≥ m̄r,3 − k × stdr,3)

whereI(x,y,c) is the intensity of the pixel at the coordinates
x andy for the channelc and m̄r,c is the mean value of the
regionr of the channelc. k is a threshold value defined by the
user andstdr,c is the standard deviation of the regionr of the
channelc To compute the mean and the standard deviation,
we use the rapid computation method shown in the section
II-A.

3

III. D ESIGN AND IMPLEMENTATION OF THE SOLUTION

Matlab was used to implement all algorithm of this assign-
ment. The code of these implementations is available insidethe
Appendix A. We implemented four main functions allowing
to perform the segmentation. These four functions are:

• Region growing: this function allows to segment the
image using region based method with a 4 neighbourhood
connectivity. The output of this function is an image
segmented.

• Median filter function with window 3 by 3: as we will see
in the discussion section, the image segmented return by
the region growing algorithm is not perfect and present
spots which can be consider like salt and peppers noise.
To remove this noise, median filter is the best filter. We
implemented two versions of this filter. One will be with
a window size 3 by 3 and another with a window size 9
by 9.

• Creation of histograms. To evaluate the accuracy of the
algorithm, we used a function to create histogram of the
main regions of the segmented image. These histograms
give a lot of information regarding the regions and if the
algorithm performs correctly.

We will describe the design of the region growing function
which is the main function of the algorithm. First, we start in
a seed. We find the neighbours of the seed and put it in a queue.
We will check the first neighbour in the queue and compute
the criteria wanted (choice between several criteria presented
in the part of the algorithm analysis). If the neighbour respects
the criteria, it will belong to the queue and we will update the
statistical parameters. If not, we will ignore this neighbour and
marked like view. We will check the queue until this one will
be empty. When the queue is empty, we search a new seed,
which is the first pixel on the image that it is not labelled and
start a new region.

IV. RESULTS ANALYSIS

A. Segmentation results

(a) Original grey-level imagecoins.jpg

(b) After segmentation usingm and σ, Coeff = 6.1, texec = 1.6s,
11segments

(c) After segmentation usingm and threshold,Coeff = 75, texec = 1.7s,
16segments

(d) After segmentation using euclidian distance,Coeff = 70, texec = 1.8s,
21segments

Fig. 4. Results of region growing segmentation forcoins.jpg image using
[1, 1] as starting point

4

(a) Original color imageairplane.jpg

(b) After segmentation usingm and σ, Coeff = 4.2, texec = 5.06s,
76segments

(c) After segmentation usingm and threshold,Coeff = 70, texec = 4.03s,
20segments

(d) After segmentation using euclidean distance,Coeff = 75, texec = 5.8s,
71segments

Fig. 5. Results of region growing segmentation forairplane.jpg image using
[1, 1] as starting point

(a) Original color imagehorses1.jpg

(b) After segmentation usingm and σ, Coeff = 2.5, texec = 48.86s,
2050segments

(c) After segmentation usingm and threshold,Coeff = 37, texec = 40.36s,
1718segments

(d) After segmentation using euclidean distance,Coeff = 47, texec =

52.55s, 2282segments

Fig. 6. Results of region growing segmentation forhorses1.jpgimage using
[1, 1] as starting point

5

(a) Original color imagehorses.jpg

(b) After segmentation usingm and σ, Coeff = 2.5, texec = 32.67s,
1724segments

(c) After segmentation usingm and threshold,Coeff = 55, texec = 34.09s,
1887segments

(d) After segmentation using euclidean distance,Coeff = 70, texec =

35.69s, 2046segments

Fig. 7. Results of region growing segmentation forhorses.jpgimage using
[1, 1] as starting point

6

(a) Imageplane.jpgafter segmentation using
region-growing

(b) Image after segmentation with segments
containing more than 5% of total pixels
extracted

(c) Histograms of red, green and blue for each of the
two main segments of the segmented image

(d) Imageplane.jpg after segmentation, fil-
tered withmedian3 × 3 filter

(e) Median3 × 3 filtered image, with seg-
ments containing more than 5% of total
pixels extracted

(f) Histograms of red, green and blue for each of the
two main segments of the filtered image

(g) Imageplane.jpg after segmentation, fil-
tered withmedian9 × 9

(h) Median9 × 9 filtered image, with seg-
ments containing more than 5% of total
pixels extracted

(i) Histograms of red, green and blue for each of the
two main segments of the filtered image

Fig. 8. Imageplane.jpg segmentation re-
sults.

7

(a) Imagehorses.jpgafter segmentation us-
ing region-growing

(b) Image after segmentation with segments
containing more than 5% of total pixels
extracted

(c) Histograms of red, green and blue for each of the four mainsegments of the segmented image

(d) Imagehorses.jpgafter segmentation, fil-
tered withmedian3 × 3 filter

(e) Median3 × 3 filtered image, with seg-
ments containing more than 5% of total
pixels extracted

(f) Histograms of red, green and blue for each of the four mainsegments of the filtered image

(g) Imagehorses.jpgafter segmentation, fil-
tered withmedian9 × 9

(h) Median9 × 9 filtered image, with seg-
ments containing more than 5% of total
pixels extracted

(i) Histograms of red, green and blue for each of the four mainsegments of the filtered image

Fig. 9. Image horses.jpg segmentation
results.

8

B. Confusion matrices

P
P
P
P
PP

Algo
GT

Plane No Plane

Plane 8622 88
No Plane 676 145015

TABLE I
CONFUSION MATRIX FOR SEGMENTED IMAGEplane.jpg, ACCURACY:

0.9951, SENSITIVITY: 0.9273, SPECIFICITY: 0.9994

P
P
P
P
PP

Algo
GT

Plane No Plane

Plane 8642 94
No Plane 656 145009

TABLE II
CONFUSION MATRIX FORmedian3 × 3 FILTERED SEGMENTATION IMAGE

OF plane.jpg, ACCURACY: 0.9951, SENSITIVITY: 0.9294, SPECIFICITY:
0.9994

P
P
P
P
PP

Algo
GT

Plane No Plane

Plane 8507 169
No Plane 791 144934

TABLE III
CONFUSION MATRIX FORmedian9 × 9 FILTERED SEGMENTATION IMAGE

OF plane.jpg, ACCURACY: 0.9938, SENSITIVITY: 0.9149, SPECIFICITY:
0.9988

P
P
P
P
PP

Algo
GT

Horses No horses

Horses 32662 1179
No Horses 7351 113209

TABLE IV
CONFUSION MATRIX FOR SEGMENTED IMAGEhorses.jpg, ACCURACY:

0.9448, SENSITIVITY: 0.8163, SPECIFICITY: 0.9897

V. D ISCUSSION

Segmentation results have shown that grey-level images seg-
mentation does perform well and precise, althoughcoins.jpg
image was an easy task for all three versions of aggregation
criteria (Figure 4), which is presented in Figures 4(b), 4(c),
and 4(d). In case of a color image, segmenting becomes more
complex and demanding. Segmentation using RGB values
is at its best performance when using coefficient-multiplied
standard deviation distance from the region’s mean as a
measure of similarity criteria (Figure 5). In this case, borders
look smoother and authentic, which is due to taking into
account statistics of the area and considering that diversity of
the region when deciding the border, but it is computationally
more expensive. Comparing mean value of the region with
threshold parameter has slightly worse performance, since
the information about standard deviation does not exist in
similarity condition any more. Result is visible in significant
increase of number of segments. Finally, euclidean distance

P
P
P
P

PP
Algo

GT
Horses No Horses

Horses 32904 1189
No Horses 7109 113199

TABLE V
CONFUSION MATRIX FORmedian3 × 3 FILTERED SEGMENTATION IMAGE

OF horses.jpg, ACCURACY: 0.9463, SENSITIVITY: 0.8223, SPECIFICITY:
0.9896

P
P
P
P

PP
Algo

GT
Horses No Horses

Horses 33432 1301
No Horses 6581 113087

TABLE VI
CONFUSION MATRIX FORmedian9 × 9 FILTERED SEGMENTATION IMAGE

OF plane.jpg, ACCURACY: 0.9490, SENSITIVITY: 0.8355, SPECIFICITY:
0.9886

performs worse, makes plenty of isolated spots - tiny numerous
segments, and borders seem to be sharper. In this case,
calculation of the mean or standard deviation is not necessary.
Reason for it’s bad speed performance is usage of square
root function that is time consuming. Imageplane.jpgtends
to be easiest for color segmentation and results are by far
the best and in this case considering both accuracy and time
cost. However, the problem of isolated segments containing
only several pixels remains as a disadvantage for all methods.
Possible solution for this is implementation of the median filter
while pre-processing (suggested as possible improvement)or
post-processing (done in this assignment).

One of the important factors for quality of segmentation is
input coefficient. Too low value of this parameter leads to over-
segmentation and too high value leads to under-segmentation.

Each of the meaningful extracted segments inplane.jpgand
horses.jpgis presented with histogram of its R, G and B values
(Figures 8(c), 9(f), 9(i), 9(c),??, ??). Histograms present
the characteristics of the biggest regions of the image.

VI. I MPROVEMENTS

Very often the region growing algorithm generates too many
segments (over-segmentation). There is possible to limit a
number of segments by different additional pre-processingand
post-processing procedures. Good example for pre-processing
is the median filtering before image segmentation. This filter-
ing procedure significantly decreases the number of regionsin
segmented image. Also, the region merging procedure as post-
processing procedure can be used to avoid over-segmentation
or remove small highlights from objects. This procedure
locates all regions smaller than a given area, analyses their 4-
connected neighbourhood and merges each region with most
similar region from its neighbourhood.

VII. C ONCLUSIONS

REFERENCES

[1] Rafael C. Gonzalez and Richard E. Woods.Digital Image Processing
(3rd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[2] Henryk Palus and Damian Bereska. Region-based colour image segmen-
tation, 1999.

9

APPENDIX A
CODE

A. Main function

%Open the image
im = imread('28075.jpg');
%Initialisation of the seed
x_seedpoint = 1; y_seedpoint = 1;
%Show the input
figure, imshow(im); title('Input image');
%Fix the coefficient to perform the segmentation
Coeff = 2.5;
[segmented_image,statsvec] = Region_Growing4color2(im , x_seedpoint, y_seedpoint, Coeff, 's'); % using std
im_labelled = label2rgb(segmented_image, 'lines' , 'k' , 'shuffle');
figure, imshow(im_labelled); title('Segmented image');
imwrite(im_labelled, 'Seg_Im_Reg_Grow.png' , 'png');
sizevac = size(statsvec);

%%% Apply filtering
%%% Median 3x3
[medim3x3,nbregions3x3] = Median_Filter3(segmented_im age);
figure, imshow(label2rgb(medim3x3, 'lines' , 'k' , 'shuffle'));

title(['Segmented image filtered 3x3, number of regions: ' , num2str(nbregions3x3)]);
imwrite(label2rgb(medim3x3, 'lines' , 'k' , 'shuffle'), 'Seg_Med3x3.png' , 'png');
%%% Median 9x9
[medim9x9,nbregions9x9] = Median_Filter9(segmented_im age);
figure, imshow(label2rgb(medim9x9, 'lines' , 'k' , 'shuffle'));

title(['Segmented image filtered 9x9, number of regions: ' , num2str(nbregions9x9)]);
imwrite(label2rgb(medim9x9, 'lines' , 'k' , 'shuffle'), 'Seg_Med9x9.png' , 'png');
%%% Compute histogram of image
percthres = 0.005;
%%% Median image 9x9
[histR9x9,histg9x9,histB9x9,bigregim9x9,nbbigreg9x9] = Create_Histogram(im,medim9x9,nbregions9x9,percthr es);
figure, imshow(label2rgb(bigregim9x9, 'jet' , 'k' , 'shuffle'));

title(['Number of region: ' , num2str(nbbigreg9x9), ' superior at ' , num2str(percthres)]);
imwrite(label2rgb(bigregim9x9, 'jet' , 'k' , 'shuffle'), 'Seg_Big_Reg_Med9x9.png' , 'png');

%%% Median image 3x3
[histR3x3,histg3x3,histB3x3,bigregim3x3,nbbigreg3x3] = Create_Histogram(im,medim3x3,nbregions3x3,percthr es);
figure, imshow(label2rgb(bigregim3x3, 'jet' , 'k' , 'shuffle'));

title(['Number of region: ' , num2str(nbbigreg3x3), ' superior at ' , num2str(percthres)]);
imwrite(label2rgb(bigregim3x3, 'jet' , 'k' , 'shuffle'), 'Seg_Big_Reg_Med3x3.png' , 'png');

%%% Segmented Image
[histR,histG,histB,bigregim,nbbigreg] = Create_Histog ram(im,segmented_image,sizevac(1)-1,percthres);
figure, imshow(label2rgb(bigregim, 'jet' , 'k' , 'shuffle'));

title(['Number of region: ' , num2str(nbbigreg), ' superior at ' , num2str(percthres)]);
imwrite(label2rgb(bigregim, 'jet' , 'k' , 'shuffle'), 'Seg_Big_Reg_Seg.png' , 'png');

B. Algorithm of region growing

function [im_out,statsvec] = Region_Growing4color2(im_in, x, y, C oeff, type)
disp('processing color segmentation... 4-neighbourhood');
%%%
% this function performs "region growing" in an image im_in f rom a specified
% seedpoint (x,y)
% im_out = Region_Growing(im_in, x, y, Coeff, type)
%%%
% im_in : input image, with integer values of pixel color
% im_out : output image with segmented regions
% x, y : coordinates of the seedpoint position (if not given us es beginning point (1,1))
% Coeff : coefficient used for defining homogenity criteria of adding pixel to a region(defaults to 2)
% type : defines aggregation criteria - 's' using standard de viation
% 't' using threshold
% 'e' using euclidian distance
% statsvec : statistic vector regarding all regions
% statsvec[index_region, meanR, meanG, meanB, stdR, stdG, stdB]
%%%
% the region is iteratively grown by comparing all unallocat ed neighbouring
% pixel values with the region values. Coeff is used as a param eter when defining measure of
% similarity, aggregation criteria.
% 't' mode - the difference between a pixel's intensity value and the region's
% mean, thresholded with Coeff

10

% 's' mode - check if the pixel's intensity value fits in the re gion's interval mean +/- Coeff * standard dev
% 'e' mode - measures if euclidian distance becomes more that threshold defined by Coeff
% if aggregation criteria measured this way is true, pixel is allocated to the respective region.
% growing of the region stops when the aggregation criteria b ecomes false,
% then the new region is begun
%%%
% default argument values
if (exist('Coeff' , 'var')==0), Coeff = 3.0; end
if (exist('x' , 'var')==0), x = 1; end
if (exist('y' , 'var')==0), y = 1; end

t = cputime; % measuring starting moment of execution time for segmentat ion
im_out = zeros(size(im_in(:, :, 1))); % output initialization
% initializing segmentation
[im_height im_width] = size(im_in(:, :, 1)); pixels_segme nted = 0; label = 1;
% initialisation of the statistical vector
statsvec = []; anclabel = 0;
% loop that manages segmentation of the image, consisits of s equential
% segmentation of individual regions, works until all pixel s are segmented
while (pixels_segmented<(im_height * im_width)),

J = zeros(size(im_in(:, :, 1))); % matrix for avoiding creating double instances in queue
% it resets each time a new region starts

region_size = 0;
% initialization of statistical parameters for red, green a nd blue
region_mean = 0.0; region_std_q = 0.0; region_std = 0.0;
region_mean_2 = 0.0; region_std_q_2 = 0.0; region_std_2 = 0 .0;
region_mean_3 = 0.0; region_std_q_3 = 0.0; region_std_3 = 0 .0;
% initialisation of statistical vector
if (anclabel 6= label)

statsvec = [statsvec ;
[label region_mean region_mean_2 region_mean_3 region_s td region_std_2 region_std_3]];

end
anclabel = label;
neighbour = [-1 0; 0 1; 1 0; 0 -1]; % 4 neighbourhood, implemented clockwise
%%%%%%%%%%%%%%%%%%%%%%%%%%
% Queue initialization
%%%%%%%%%%%%%%%%%%%%%%%%%%
Queue_size = im_height * im_width; Queue_end = 0; Queue_start = 0; Queue = zeros(Queu e_size, 5);
%%%%%%%%%%%%%%%%%%%%%%%%%%
if isempty(x), [x, y] = find(im_out == 0, 1); end % if next region coordinates cannot be found,

% algorithm searches for the first available
% that is not segmented

count = 0; % counter giving 2 iterations for standard deviation calcul ation to establish
% loop that does segmentation of one individual region
while (1)

if ((count ≤1) || homogenity_condition),
count = count + 1; if count >1, count = 2; end % count enables execution two times regardless of

% homogenity condition so that standard deviation can
% start to converge without being interrupted by
% condition

im_out(x, y) = label; % labelling the pixel: labels start from 1 and increment: 1, 2 , 3...
region_size = region_size + 1; % region size increases after labelling
% keeping track of region size
% iterative, recursive calculation of region mean and stand ard deviation
% (better speed performance)
% using values from previous iteration

% first dimension - red for color images - mean and std recursi on
region_std_q = region_std_q +
(double(region_size - 1)/double(region_size)) * (double(im_in(x, y, 1)) - region_mean)ˆ2;
region_mean = region_mean + (double(im_in(x, y, 1)) - regio n_mean) / double(region_size);
region_std = sqrt(double(region_std_q / (region_size))) ;
statsvec(label,2) = region_mean;
statsvec(label,5) = region_std;

% second dimension - green for color images - mean and std recu rsion
region_std_q_2 = region_std_q_2 +
(double(region_size - 1)/double(region_size)) * (double(im_in(x, y, 2)) - region_mean_2)ˆ2;
region_mean_2 = region_mean_2 + (double(im_in(x, y, 2)) - r egion_mean_2) / double(region_size);
region_std_2 = sqrt(double(region_std_q_2 / (region_siz e)));
statsvec(label,3) = region_mean_2;
statsvec(label,6) = region_std_2;

% third dimension - blue for color images - mean and std recurs ion
region_std_q_3 = region_std_q_3 +
(double(region_size - 1)/double(region_size)) * (double(im_in(x, y, 3)) - region_mean_3)ˆ2;
region_mean_3 = region_mean_3 + (double(im_in(x, y, 3)) - r egion_mean_3) / double(region_size);

11

region_std_3 = sqrt(double(region_std_q_3 / (region_siz e)));
statsvec(label,4) = region_mean_3;
statsvec(label,7) = region_std_3;

surrounding_regions = [];
for j = 1 : 4,

xn = x + neighbour(j,1); yn = y + neighbour(j,2);
inside = (xn ≥1)&&(yn ≥1)&&(xn ≤im_height)&&(yn ≤im_width);
if (inside&&(im_out(xn,yn)==0)&&(J(xn, yn)==0))

% Queue entry - coordinates and R, G, B
Queue_end = Queue_end + 1;
Queue(Queue_end, 1) = xn; Queue(Queue_end, 2) = yn;
Queue(Queue_end, 3) = im_in(xn, yn, 1);
Queue(Queue_end, 4) = im_in(xn, yn, 2);
Queue(Queue_end, 5) = im_in(xn, yn, 3);

J(xn, yn) = 1; % keeping track of values that are entered in queue
% so that they are not entered in queue again

elseif (inside && (im_out(xn, yn) 6= 0)),
%memorizing neighbouring pixels that were segmented
surrounding_regions = [surrounding_regions im_out(xn, y n)];

end
end
pixels_segmented = pixels_segmented + 1;

end
Queue_start = Queue_start + 1;
if Queue_end == 0, break ; end % exits the loop if none of the first neighbours was entered to queue

% queue was
% if (Queue_start>Queue_end) && (im_out(x, y)==0),
% x = double(Queue(Queue_end, 1)); y = double(Queue(Queue_ end, 2));
% break;
% elseif (Queue_start>Queue_end)&& (im_out(x, y) 6=0)
% [x, y] = find(im_out == 0, 1);
% break;
% end

if (Queue_start > Queue_end)
if (im_out(x, y) == 0),

x = double(Queue(Queue_end, 1)); y = double(Queue(Queue_e nd, 2));
else

[x, y] = find(im_out == 0, 1);
end
break ;

end
pixel_value = Queue(Queue_start, 3);
pixel_value_2 = Queue(Queue_start, 4);
pixel_value_3 = Queue(Queue_start, 5);
x = double(Queue(Queue_start, 1)); y = double(Queue(Queue _start, 2));
% aggregation criteria type
if type == 't' ,

% use Coeff as threshold
homogenity_condition = ((pixel_value ≤ region_mean + Coeff)
&&(pixel_value ≥ region_mean - Coeff)) && ...

((pixel_value_2 ≤ region_mean_2+ Coeff)
&&(pixel_value_2 ≥ region_mean_2- Coeff)) && ...
((pixel_value_3 ≤ region_mean_3+ Coeff)
&&(pixel_value_3 ≥ region_mean_3- Coeff));

else if type == 's' ,
% use Coeff as std multiplier
homogenity_condition = ((pixel_value ≤ region_mean + Coeff * region_std)
&&(pixel_value ≥ region_mean - Coeff * region_std)) && ...

((pixel_value_2 ≤ region_mean_2+ Coeff * region_std_2)
&&(pixel_value_2 ≥ region_mean_2- Coeff * region_std_2)) && ...
((pixel_value_3 ≤ region_mean_3+ Coeff * region_std_3)
&&(pixel_value_3 ≥ region_mean_3- Coeff * region_std_3));

else
if type == 'e' ,

% use Coeff as threshold for euclidian distance
homogenity_condition = sqrt((pixel_value - region_mean) ˆ2 +

(pixel_value_2 - region_mean_2)ˆ2 + (pixel_value_3 - regi on_mean_3)ˆ2) ≤ Coeff;
end

end
end

end % while (1)
if Queue_end == 0,

im_out(x, y) = mode(surrounding_regions);

12

label = label - 1;
x = []; y = [];

end
label = label + 1;

end % while (pixels_segmented<(im_height * im_width))
e = cputime - t;
disp('finished');
fprintf(1, '\nElapsed time: %3.2f seconds' , e);
fprintf(1, '\nNumber of segments: %i' , label-1);
fprintf(1, '\nPixels segmented: %i (out of %i)\n\n' , pixels_segmented, im_height * im_width);

C. Creation of histogram of the main region

%%%
%%% Function to construct histogram of each region with a siz e suffisant
%%% which are a percentage of the size of the image
%%%
%%% Input:
%%% im: Original Image
%%% segmented_image: Segmented image
%%% nbregion_im_seg: number of region of the segmented imag e
%%% percthres: Threshold to take only region superior to thi s
%%% percentage (from 0 to 1)
%%% Out:
%%% histR: Histogram Red of the image
%%% histG: Histogram Green of the image
%%% histB: Histogram Blue of the image
%%% bigregionim: image contening only nbreg (biggest regio n)
%%% nbreg: number of biggest region found
%%%
function [histR, histG, histB, bigregionim, nbreg] =
Create_Histogram(im,segmented_image,nbregion_im_seg ,percthres)

%%% Compute histogram of each region
[heightim,widthim] = size(segmented_image);
%%% Allow to know the number and which are the different label s in the
%%% segmented image
vecreg = unique(segmented_image);
%%% Allocate histograms with a maximum number of nbregions
histR = zeros(256,nbregion_im_seg);
histG = zeros(256,nbregion_im_seg);
histB = zeros(256,nbregion_im_seg);
for i = 1:nbregion_im_seg

for j = 1:heightim
for k = 1:widthim

if (vecreg(i) == segmented_image(j,k))
histR(im(j,k,1)+1,i) = histR(im(j,k,1)+1,i) + 1;
histG(im(j,k,2)+1,i) = histG(im(j,k,2)+1,i) + 1;
histB(im(j,k,3)+1,i) = histB(im(j,k,3)+1,i) + 1;

end
end

end
histR(:,i) = histR(:,i) / (heightim * widthim);
histG(:,i) = histG(:,i) / (heightim * widthim);
histB(:,i) = histB(:,i) / (heightim * widthim);

end

bigregionim = zeros(size(segmented_image));
nbreg = 0;
for i = 1:nbregion_im_seg

sumRegionR = sum(histR(:,i));
sumRegionG = sum(histG(:,i));
sumRegionB = sum(histB(:,i));
if (sumRegionR > percthres)||(sumRegionG > percthres)||(su mRegionB > percthres)

nbreg = nbreg + 1;
figure;
hold on;
subplot(211)
plot(histR(:,i), '-r');
hold on;
plot(histG(:,i), '-g');
hold on;
plot(histB(:,i), '-b');
hold on;
title(['Histogram RGB of the region labelled n ' , num2str(vecreg(i))]);
hold on;

13

squareim = zeros(16,16,3);
for j = 1:256

if (histR(j,i) == max(histR(:,i)))
val1 = j;

end
if (histG(j,i) == max(histG(:,i)))

val2 = j;
end
if (histB(j,i) == max(histB(:,i)))

val3 = j;
end

end
for j = 1:16

for k = 1:16
squareim(j,k,1) = val1;
squareim(j,k,2) = val2;
squareim(j,k,3) = val3;

end
end
hold on;
subplot(212)
imshow(uint8(squareim));title('Predominant color segmented');
saveas(gcf,['Hist_Reg_' ,num2str(nbreg)], 'png');
for j = 1:heightim

for k = 1:widthim
if (vecreg(i) == segmented_image(j,k))

bigregionim(j,k) = segmented_image(j,k);
end

end
end

end
end

D. Median filter with window 3 by 3

%%%
%%% Function to apply median filter with window 3x3
%%%
%%% Input:
%%% inputim: input image (1 channel only)
%%% Out:
%%% fimage: image filtered (1 channel only)
%%% nbregions: number of regions
%%%
function [fimage, nbregions] = Median_Filter3(inputim)

%%% Apply filter with window 3 by 3
fimage = medfilt2(inputim);

%%% Count the number of regions
vecregions = unique(fimage);
[nbregions, depth] = size(vecregions);

E. Median filter with window 9 by 9

%%%
%%% Function to apply median filter with window 9x9
%%%
%%% Input:
%%% inputim: input image (1 channel only)
%%% Out:
%%% fimage: image filtered (1 channel only)
%%% nbregions: number of regions
%%%
function [fimage, nbregions] = Median_Filter9(inputim)

%%% Apply filter with window 3 by 3
fimage = medfilt2(inputim, [9 9]);

%%% Count the number of regions
vecregions = unique(fimage);
[nbregions, depth] = size(vecregions);

