Scene Segmentation and Interpretation
Coursework 1lmage Segmentation

Miroslav Radojevic, Guillaume Lemaitre
Universitat de Girona

GR
Abstract—Segmentation is an algorithm that subdivides an im-

age into its meaningful constituent regions or objects. Degnding
on the approach, segmenting algorithms use basic properteof > vVY
image intensity values - discontinuity and similarity. In this work,
region growing segmentation method is implemented and test
as a segmentation tool for grey and color images.

R G B

»

A

I. INTRODUCTION AND PROBLEM DEFINITION :
Region growing method groups pixels or subregions into ¥ | /.
larger regions based on the predefined criteria for growth. A !
The basic approach is to start with a set of "seed” points T r

and from these grow regions by appending to each seed those
neighbouring pi>§els that have predefined properties sindla Fig. 1. Algorithm description scheme
the seed. Intensity of grey level or color may be used to definé
similarity criteria [1]. Common approaches for color image
segmentation are clustering algorithms such as k-means or
Mixture of Principal Components, however, these algorghmyould affect the outcome of the algorithm execution and
do not take spatial information into account. Furthermor@uality of segmentation. Outcome depends on position and
C|ustering a|g0rithms require prior information regagji‘n’um- number of "seeds”. Idea is that Segmentation starts from
ber of clusters, which is a difficult or ambiguous task. AROINts of interest and sequentially, pixel by pixel, expand
alternative set of algorithms exists which uses color siriti the region by adding those pixels that satisfy the critefia o
or intensity similarity and a region-growing approach tats Similarity (Figure 11). Homogeneity criteria for colour iage
information. Region growing is based on the following prins€gmentation can be applied by using different colour space
ciples. The algorithm starts with a seed pixel, examineallocnd different metrics. Criteria for similarity can be cdated
pixels around it, determines the most similar one, whichémt using features, such as color intensity (red, green and blue
included in the region if it meets certain criteria. This gges Components), hue, saturation, luminance or chrominange [2
is followed until no more pixels can be added. The definitibn &nd appropriate calculation, for instance, statisticghsas
similarity may be set in any number of different ways. Regiofean or standard deviation, or metrics distance. Calallate
growing algorithms have been used mostly in the analysis wlue is compared with threshold in order to obtain conditio
grey-scale images, however, segmenting a color image using
adequate properties can be accomplished successfully [2].
The task is to |mpI§ment region growing on given set o'&_ Computation of mean and standard deviation
grey-level and color pictures. Segmentation is done sequeri
tially, each time examining neighbouring pixels of a region In this section, we will present the calculation of mean and
that starts growing from ”"seed” points. Those neighbougandard deviation. To compute these statistics, we uged ra
that are satisfying criteria of similarity are added to thealculation methods allowing to compute mean and standard
region, leaving their own neighbours in the queue for furthéleviation only with the last value known of this parameters.
examination (Figure Il). Neighbourhood is defined as 8- 1) Rapid computation of meanWe compute the mean
neighbourhood or 4-neighbourhood, depending on conmectiealue with a recursive method as follow:

type. This way, region growing satisfies another princidle o (I) = io1.c)
x,Yy,C 1—1,¢c

region-based segmentation - connectivity. In each case, th Miec = Mi—1,c+ b (1)
segmentation results should strongly be determined byiagun "0p
parameter which defines aggregation criteria threshold. with initial condition

Il. ALGORITHM ANALYSIS mo,c =0 @)

Region growing is designed so that it starts from specifiadherenb, is the number of pixels/, , ., is the intensity of
seed points supplied as arguments. In case seed point taeepixel in coordinates andy for the channet, m; . is the
omitted at the input, default value for starting point is @), mean value of the channelat the instanté andm;_ . is the
An algorithm that would successfully determine seed pointsean value of the channelat the instant — 1.

2) Rapid computation of standard deviatioie compute <m0

the standard deviation value with a recursive method asvioll ' ' ' \ '
_ Jvarg;
Stdi,c = nbp (3) m+k
where: o0]
-k
vargic = Varg;—i.c
nb, — 1 _ 9
x (1 — M 4
wpy e —micie)® (@) |
with initial condition
vargp,. =0 () '”kw
wherenb, is the number of pixels/, , ., is the intensity of o = 1W15'D b o 0
the pixel in coordinates andy for the channet and std; . m

is the standard deviation at timi€for the channet.
Fig. 2. Example of the mean value criterion for one dimension

B. Criteria

In this section, we will present different criteria that we < _
used to decide if a pixel belongs or not to a region. First,
we will present the criterion based on "Euclidean distance” £ -
Then, we will introduce a method using the mean value and

a threshold. We will conclude with a criterion based on the & - 34.1%| 34.1%
standard deviation value of the region and the mean value of |
the region. S

1) Euclidean distance criterion:We compute the "Eu- o _,
clidean distance” between the value of the pixel and the mear = 36 -20 -l u 16 206 30
value of the region to know if this pixel belongs to the region
We can formulate this criterion as follow: Fig. 3. Exemple of the standard deviation criterion for offaehsion

D} = Uy = rr)?
= 2
w0 TT’G)Q 3) Standard deviation criterionWe call standard deviation
+U(w,y,5) ~ r.B) ©6) criterion, a criterion based on the computation of the mean
where [, , .y is the intensity of the pixel at the coordinatesalue and standard deviation of the region. In fact, we agsum
x andy for the channek andm,. . is the mean value of the that a pixel belongs to the region if the value is inside an
regionr of the channet. The following equation defines theinterval defined by the mean value ahdimes the standard
belonging criterion of a pixel to a region: deviation of the region wheré is defined by the user. The
@) figure 3 presents this criterion for one dimension. We work in
a three dimensions space with red, green and blue. Hence, we
can formulate the criterion as follow:

Dy < threshold = pixel belongs to R
D, > threshold = pixel does not belong to R

2) Mean value criterion:We call mean value criterion, a
criterion based on the computation of the mean value of the

region. In fact, we assume that a pixel belongs to the region Tayy) = 7? r1 kX sty ©)
if the value of the pixel is inside an interval defined by the &&(lipy,)y =mea —k x stdr)
mean value and a coefficient chosen by the user. The figure 2 (I (2.y,2) < Mp2+k X stdy)
present this criterion.for one dimension. We work in a three &&(I(ny2) > Tra —k X std,o)
dimensions space with red, green and blue. Hence, we can (I, < s+ kX stdy.)
formulate the criterion as follow: (ey,3) =13 St
_ _ &&(I(;E,y,?)) Z ﬁ’LT_g —k x Std 3)

(I(m,y,l) < My + k)&&(l(w,y,l) > me1 — k) (8)

(I(m,y,2) <mpa+ k)&&(l(z,y,2) > My — k

(I(Ivyv3) < M3+ k)&&(l(zyS) > Mp3 — k

where I, , . is the intensity of the pixel at the coordinates
z andy for the channet andm,. . is the mean value of the
where I, , . is the intensity of the pixel at the coordinatesegionr of the channet. & is a threshold value defined by the
x andy for the channet andm,. . is the mean value of the user andstd,. . is the standard deviation of the regiprof the
regionr of the channek. k is a threshold value defined bychannelc To compute the mean and the standard deviation,
the user. To compute the mean, we use the rapid computatios use the rapid computation method shown in the section
method shown in the section II-A. [I-A.

IIl. DESIGN AND IMPLEMENTATION OF THE SOLUTION

Matlab was used to implement all algorithm of this assign-
ment. The code of these implementations is available irthiele

Appendix A. We implemented four main functions allowing
to perform the segmentation. These four functions are:
image using region based method with a 4 neighbourho
connectivity. The output of this function is an image
o Median filter function with window 3 by 3: as we will see
in the discussion section, the image segmented return
spots which can be consider like salt and peppers noise. (a) Original grey-level imageoins.jpg
To remove this noise, median filter is the best filter. W=
a window size 3 by 3 and another with a window size .
by 9.
algorithm, we used a function to create histogram of tt
main regions of the segmented image. These histogra
algorithm performs correctly.
We will describe the design of the region growing functiol
a seed. We find the neighbours of the seed and putitin a quepg After segmentation usingn and o, Coeff = 6.1, tezec = 1.6s,
We will check the first neighbour in the queue and compuigsegments
in the part of the algorithm analysis). If the neighbour exdtp
the criteria, it will belong to the queue and we will update th .
marked like view. We will check the queue until this one wil .
be empty. When the queue is empty, we search a new se
start a new region. .
IV. RESULTS ANALYSIS

o Region growing: this function allows to segment th
segmented.
the region growing algorithm is not perfect and presel
implemented two versions of this filter. One will be with
o
« Creation of histograms. To evaluate the accuracy of tl . . .
give a lot of information regarding the regions and if th .
which is the main function of the algorithm. First, we start i
the criteria wanted (choice between several criteria pitese
statistical parameters. If not, we will ignore this neighband
which is the first pixel on the image that it is not labelled an . .
A. Segmentation results

(c) After segmentation using: and thresholdCoef f = 75, tewec = 1.7s,

16segments

N
:
. \‘

(d) After segmentation using euclidian distan€&ef f = 70, tezec = 1.8s,
21segments

Fig. 4. Results of region growing segmentation émins.jpgimage using
[1, 1] as starting point

(a) Original color imageairplane.jpg (a) Original color imagenhorsesl.jpg

(b) After segmentation usingn and o, Coeff = 4.2, tezec = 5.06s, (b) After segmentation usingn and o, Coeff = 2.5, tegec = 48.86s,
T6segments 2050segments

(c) After segmentation using: and thresholdCoef f = 70, tewec = 4.03s, (C) After segmentation using: and thresholdCoef f = 37, tewec = 40.36s,
20segments 1718segments

(d) After segmentation using euclidean distanCeef f = 75, tezec = 5.8s, (d) After segmentation using euclidean distan€&eff = 47, tegzec =
Tlsegments 52.55s, 2282segments

Fig. 5. Results of region growing segmentation &mplane.jpgimage using Fig. 6. Results of region growing segmentation fimrsesl.jpgmage using
[1, 1] as starting point [1, 1] as starting point

(b) After segmentation usingn and o, Coeff = 2.5, tezec = 32.67s,
1724segments

(c) After segmentation using: and thresholdCoef f = 55, tezec = 34.09s,
1887segments

(d) After segmentation using euclidean distanC&eff = 70, tewec =
35.69s, 2046segments

Fig. 7. Results of region growing segmentation farses.jpgimage using
[1, 1] as starting point

(a) Imageplane.jpgafter segmentation usin(p) Image after segmentation with segme(ay Histograms of red, green and blue for each of the
region-growing containing more than 5% of total pixetsvo main segments of the segmented image
extracted

(d) Imageplane.jpg after segmentation, fil{e) Median3 x 3 filtered image, with segff) Histograms of red, green and blue for each of the
tered withmedian3 x 3 filter ments containing more than 5% of totalo main segments of the filtered image
pixels extracted

(9) Imageplane.jpg after segmentation, fil¢h) Median9 x 9 filtered image, with segfi) Histograms of red, green and blue for each of the
tered withmedian9 x 9 ments containing more than 5% of totalo main segments of the filtered image
pixels extracted

Fig. 8. Imageplane.jpg segmentation re-
sults.

(a) Imagehorses.jpgafter segmentation ugb) Image after segmentation with segments
ing region-growing containing more than 5% of total pixels
extracted

(c) Histograms of red, green and blue for each of the four rsagments of the segmented image

(d) Imagehorses.jpgafter segmentation, fille) Median3 x 3 filtered image, with seg-
tered withmedian3 x 3 filter ments containing more than 5% of total
pixels extracted

(f) Histograms of red, green and blue for each of the four ns@gments of the filtered image

(g) Imagehorses.jpgafter segmentation, fil¢h) Median9 x 9 filtered image, with seg-
tered withmedian9 x 9 ments containing more than 5% of total
pixels extracted

(i) Histograms of red, green and blue for each of the four nsaigments of the filtered image

Fig. 9. Image horses.jpg segmentation
results.

B. Confusion matrices Algo ST 1 Horses | No Horses
Horses 32904 1189
GT No Horses 7109 113199
Plane | No Plane
Algo
Plane 8622 88 TABLE V
NG Pl e TAEOIE CONFUSION MATRIX FORmedian3 X 3 FILTERED SEGMENTATION IMAGE
0 Flane OF horses.jpg ACCURACY: 0.9463, ENSITIVITY: 0.8223, SECIFICITY;

TABLE | 0.9896
CONFUSION MATRIX FOR SEGMENTED IMAGEplane.jpg ACCURACY:
0.9951, &NSITIVITY: 0.9273, $ECIFICITY. 0.9994

GT
Algo Horses | No Horses
Horses 33432 1301

No Horses 6581 113087

GT
Algo Plane | No Plane TABLE VI
Plane 8642 94 CONFUSION MATRIX FORmedian9 X 9 FILTERED SEGMENTATION IMAGE
No Plane 656 145009 OF plane.jpg ACCURACY: 0.9490, &NsSITIVITY: 0.8355, $ECIFICITY:
TABLE Il 0.9886

CONFUSION MATRIX FORmedian3 X 3 FILTERED SEGMENTATION IMAGE
OF plane.jpg ACCURACY: 0.9951, &NSITIVITY: 0.9294, SECIFICITY:

0.9994

performs worse, makes plenty of isolated spots - tiny nuonero
segments, and borders seem to be sharper. In this case,

calculation of the mean or standard deviation is not necgssa
Algo ST 1 Plane | No Plane Reason fpr it's be_ld _speed perfo_rmance is usage of square

Plane 3507 169 root function that is time consuming. Imagéane.jpgtends

No Plane | 791 | 144934 to be easiest for color segmentation and results are by far
TABLE IlI the best and in this case considering both accuracy and time

CONFUSION MATRIX FORmedian9 x 9 FILTERED SEGMENTATION IMAGE cost. However, the problem of isolated segments containing
OF plane.jpg ACCURACY. 0.9938, ENSITIVITY: 0.9149, ECIFICITY. ony several pixels remains as a disadvantage for all msthod

0.9988 Possible solution for this is implementation of the medi#arfi
while pre-processing (suggested as possible improvenoent)
post-processing (done in this assignment).

T One of the important factors for quality of segmentation is
Algo Horses | No horses input coefficient. Too low value of this parameter leads terev
Horses 32662 1179 segmentation and too high value leads to under-segmemtatio
No Horses | 7351 | 113209 Each of the meaningful extracted segmentplane.jpgand
TABLE IV horses.jpgs presented with histogram of its R, G and B values

CONFUSION MATRIX FOR SEGMENTED IMAGEhOrses.jpg ACCURACY: ; ; L) ;
0.9448, &NsSITIVITY: 0.8163, $ECIFICITY. 0.9897 (Figures 8(C).’ .g(f)’ 9(0), g.(c)" N 7) Hlstograms present
the characteristics of the biggest regions of the image.

VI. IMPROVEMENTS

Very often the region growing algorithm generates too many
V. DISCUSSION segments (over-segmentation). There is possible to limit a
Segmentation results have shown that grey-level images segmber of segments by different additional pre-procesairiy
mentation does perform well and precise, althoegns.jpg post-processing procedures. Good example for pre-priogess
image was an easy task for all three versions of aggregatierthe median filtering before image segmentation. Thisrfilte
criteria (Figure 4), which is presented in Figures 4(b),)4(cing procedure significantly decreases the number of redions
and 4(d). In case of a color image, segmenting becomes meggmented image. Also, the region merging procedure as post
complex and demanding. Segmentation using RGB valugscessing procedure can be used to avoid over-segmentatio
is at its best performance when using coefficient-multiblicor remove small highlights from objects. This procedure
standard deviation distance from the region’s mean aslagzates all regions smaller than a given area, analyses4hei
measure of similarity criteria (Figure 5). In this case,d®s connected neighbourhood and merges each region with most
look smoother and authentic, which is due to taking intsimilar region from its neighbourhood.
account statistics of the area and considering that diyeo$i
the region when deciding the border, but it is computatignal VII. CONCLUSIONS
more expensive. Comparing mean value of the region with REFERENCES
threshold parameter has slightly worse performance, since _ . .
the information about standard deviation does not exist ifl aa¢l C. Gonzalez and Richard E. WoodBigital Image Processing
(3rd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.
similarity condition any more. Result is visible in signditt [2] Henryk Palus and Damian Bereska. Region-based coloagénsegmen-
increase of number of segments. Finally, euclidean distanc tation, 1999.

APPENDIXA

CoDE
A. Main function
%0Open the image
im = imread('28075.jpg’);
%Initialisation of the seed
x_seedpoint = 1; y_seedpoint = 1;
%Show the input
figure, imshow(im); title('Input image');
%Fix the coefficient to perform the segmentation
Coeff = 2.5;
[segmented_image,statsvec] = Region_Growing4color2(im , X_seedpoint, y_seedpoint, Coeff, '
im_labelled = label2rgb(segmented_image, 'lines’ , 'k, ‘shuffle’);
figure, imshow(im_labelled); title(‘Segmented image');
imwrite(im_labelled, 'Seg_Im_Reg_Grow.png" , 'png');
sizevac = size(statsvec);
%%% Apply filtering
%%% Median 3x3
[medim3x3,nbregions3x3] = Median_Filter3(segmented_im age);
figure, imshow(label2rgh(medim3x3, 'lines' , k', ‘shuffle’));
title([‘Segmented image filtered 3x3, number of regions: ' , num2str(nbregions3x3)]);
imwrite(label2rgb(medim3x3, 'lines’ , 'k, 'shuffle’), 'Seg_Med3x3.png' , 'png');
%%% Median 9x9
[medim9x9,nbregions9x9] = Median_Filter9(segmented_im age);
figure, imshow(label2rgb(medim9x9, 'lines' , k', ‘shuffle’);
title([‘Segmented image filtered 9x9, number of regions: ' , num2str(nbregions9x9)]);
imwrite(label2rgb(medim9x9, 'lines’ , 'k, 'shuffle’), 'Seg_Med9x9.png' , 'png');
%%% Compute histogram of image
percthres = 0.005;
%%% Median image 9x9
[histR9x9, histg9x9,histB9x9,bigregim9x9,nbbigreg9x9] = Create_Histogram(im,medim9x9,nbregions9x9,percthr
figure, imshow(label2rgb(bigregim9x9, et , 'k , ‘shuffle’);
title([‘Number of region: ' , num2str(nbbigreg9x9), ' superior at ' , num2str(percthres)]);
imwrite(label2rgb(bigregim9x9, jett , 'k , 'shuffle’), 'Seg_Big_Reg_Med9x9.png" , 'png');
%%% Median image 3x3
[histR3x3,histg3x3,histB3x3,bigregim3x3,nbbigreg3x3] = Create_Histogram(im,medim3x3,nbregions3x3,percthr
figure, imshow(label2rgb(bigregim3x3, et , 'k , ‘shuffle’);
title([‘Number of region: ' , num2str(nbbigreg3x3), ' superior at ' , num2str(percthres)]);
imwrite(label2rgb(bigregim3x3, jett , 'k , 'shuffle’), 'Seg_Big_Reg_Med3x3.png" , 'png');
%%% Segmented Image
[histR,histG, histB,bigregim,nbbigreg] = Create_Histog ram(im,segmented_image,sizevac(1)-1,percthres);
figure, imshow(label2rgb(bigregim, jett , 'k , ‘shuffle’);
title([‘Number of region: ' , num2str(nbbigreg), ' superior at ' , num2str(percthres)]);
imwrite(label2rgb(bigregim, et , 'k , ‘shuffle’), 'Seg_Big_Reg_Seg.png' ,'png’);
B. Algorithm of region growing
function [im_out,statsvec] = Region_Growing4color2(im_in, x, y, C oeff, type)

disp('processing color segmentation... 4-neighbourhood'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"/o%%%"/o"/o%%%"/o"/o%%%o/o"/o

% this function performs "region growing" in an image im_in f rom a specified
% seedpoint (x,y)

% im_out = Region_Growing(im_in, X, y, Coeff, type)

%69%% % %% %6 %% % %% % %% % %% % %% % %% %% %% % %% %% % %% % %% % %% % %%

% im_in : input image, with integer values of pixel color

% im_out : output image with segmented regions

% X, y : coordinates of the seedpoint position (if not given us es beginning point (1,1))

% Coeff : coefficient used for defining homogenity criteria of adding pixel to a region(defaults to 2)
% type : defines aggregation criteria - 's' using standard de viation

% 't" using threshold

% ‘e’ using euclidian distance

% statsvec : statistic vector regarding all regions

% statsvec[index_region, meanR, meanG, meanB, stdR, stdG, stdB]

%9%6%%%6% % %% %% %% %% % %% % %% % %% %% %% % %% %% % %% % %% %6 %% % %%

% the region is iteratively grown by comparing all unallocat ed neighbouring

% pixel values with the region values. Coeff is used as a param eter when defining measure of
% similarity, aggregation criteria.

% 't mode - the difference between a pixel's intensity value and the region's

% mean, thresholded with Coeff

s'); % using std

es);

es);

10

% 's' mode - check if the pixel's intensity value fits in the re gion's interval mean +/- Coeff * standard dev
% 'e' mode - measures if euclidian distance becomes more that threshold defined by Coeff

% if aggregation criteria measured this way is true, pixel is allocated to the respective region.

% growing of the region stops when the aggregation criteria b ecomes false,

% then the new region is begun
9%%% %% % %% % %% %% % %% %% % %% %% % %% %% % %% %% % %% %% % %% %% %%
% default argument values

if (exist('Coeff ,'var")==0), Coeff = 3.0; end

if (exist('x' ,'var')==0), x = 1, end

if (exist(‘'y' ,'var')==0), y = 1; end

t = cputime; % measuring starting moment of execution time for segmentat ion
im_out = zeros(size(im_in(:, :, 1))); % output initialization

% initializing segmentation

[im_height im_width] = size(im_in(;, :, 1)); pixels_segme nted = 0; label = 1;

% initialisation of the statistical vector
statsvec = []; anclabel = 0;

% loop that manages segmentation of the image, consisits of s equential
% segmentation of individual regions, works until all pixel s are segmented
while (pixels_segmented<(im_height * im_width)),
J = zeros(size(im_in(:, :, 1))); % matrix for avoiding creating double instances in queue

% it resets each time a new region starts
region_size = 0;

% initialization of statistical parameters for red, green a nd blue
region_mean = 0.0; region_std_q = 0.0; region_std = 0.0;
region_mean_2 = 0.0; region_std_g_2 = 0.0; region_std_2 = 0 .0;
region_mean_3 = 0.0; region_std_g_3 = 0.0; region_std_ 3 = 0 .0;
% initialisation of statistical vector
if (anclabel + label)
statsvec = [statsvec ;
[label region_mean region_mean_2 region_mean_3 region_s td region_std_2 region_std_3]];
end
anclabel = label;
neighbour = [-1 0; 0 1; 1 0; 0 -1]; % 4 neighbourhood, implemented clockwise
%%%%% %% %% %% %% %% % %% %% % %% %% %
% Queue initialization
%%%%% %% %% %% %% % %% % %% % %% % %% %
Queue_size = im_height *im_width; Queue_end = 0; Queue_start = 0; Queue = zeros(Queu e_size, 5);
%%%%% %% %% %% %% % %% % %% % %% % %% %
if isempty(x), [x, y] = find(im_out == 0, 1); end % if next region coordinates cannot be found,
% algorithm searches for the first available
% that is not segmented
count = 0; % counter giving 2 iterations for standard deviation calcul ation to establish
% loop that does segmentation of one individual region
while (1)
if ((count <1) || homogenity_condition),
count = count + 1; if count >1, count = 2; end % count enables execution two times regardless of
% homogenity condition so that standard deviation can
% start to converge without being interrupted by
% condition
im_out(x, y) = label; % labelling the pixel: labels start from 1 and increment: 1, 2 , 3.
region_size = region_size + 1; % region size increases after labelling
% keeping track of region size
% iterative, recursive calculation of region mean and stand ard deviation

% (better speed performance)
% using values from previous iteration

% first dimension - red for color images - mean and std recursi on

region_std_q = region_std_q +

(double(region_size - 1)/double(region_size)) * (double(im_in(x, y, 1)) - region_mean)2;
region_mean = region_mean + (double(im_in(x, y, 1)) - regio n_mean) / double(region_size);

region_std = sqrt(double(region_std_q / (region_size))) ;
statsvec(label,2) = region_mean;
statsvec(label,5) = region_std,;

% second dimension - green for color images - mean and std recu rsion

region_std_q_2 = region_std_q_2 +

(double(region_size - 1)/double(region_size)) * (double(im_in(x, y, 2)) - region_mean_2)"2;
region_mean_2 = region_mean_2 + (double(im_in(x, y, 2)) - r egion_mean_2) / double(region_size);
region_std_2 = sqrt(double(region_std_q_2 / (region_siz e)));

statsvec(label,3) = region_mean_2;
statsvec(label,6) = region_std_2;

% third dimension - blue for color images - mean and std recurs ion
region_std_q_3 = region_std_q_3 +
(double(region_size - 1)/double(region_size)) * (double(im_in(x, y, 3)) - region_mean_3)"2;

region_mean_3 = region_mean_3 + (double(im_in(x, y, 3)) - r egion_mean_3) / double(region_size);

%
%
%
%
%
%
%

region_std_3 = sqrt(double(region_std_q_3 / (region_siz e)));
statsvec(label,4) = region_mean_3;
statsvec(label,7) = region_std_3;

surrounding_regions = [];

for j=1:4,
xn = x + neighbour(j,1); yn = y + neighbour(j,2);
inside = (xn >1)&&(yn >1)&&(xn <im_height)&&(yn <im_width);
if (inside&&(im_out(xn,yn)==0)&&(JI(xn, yn)==0))

% Queue entry - coordinates and R, G, B

Queue_end = Queue_end + 1;

Queue(Queue_end, 1) xn; Queue(Queue_end, 2) = yn;
Queue(Queue_end, 3) im_in(xn, yn, 1);
Queue(Queue_end, 4) im_in(xn, yn, 2);
Queue(Queue_end, 5) im_in(xn, yn, 3);

J(xn, yn) = 1; % keeping track of values that are entered in queue
% so that they are not entered in queue again
elseif (inside && (im_out(xn, yn) = 0)),
%memorizing neighbouring pixels that were segmented
surrounding_regions = [surrounding_regions im_out(xn, y n)j;
end
end
pixels_segmented = pixels_segmented + 1;
end
Queue_start = Queue_start + 1;

11

if Queue_end == 0, break ; end % exits the loop if none of the first neighbours was entered to queue

% queue was
if (Queue_start>Queue_end) && (im_out(x, y)==0),

x = double(Queue(Queue_end, 1)); y = double(Queue(Queue_ end, 2));
break;
elseif (Queue_start>Queue_end)&& (im_out(x, y) +#0)
[X, y] = find(im_out == 1);
break;

end
if (Queue_start > Queue_end)
if (im_out(x, y) == 0),

x = double(Queue(Queue_end, 1)); y = double(Queue(Queue_e nd, 2));
else
[x, y] = find(im_out == 0, 1);
end
break ;
end
pixel_value Queue(Queue_start, 3);

pixel_value_2 = Queue(Queue_start, 4);
pixel_value_3 = Queue(Queue_start, 5);

x = double(Queue(Queue_start, 1)); y = double(Queue(Queue _start, 2));
% aggregation criteria type
if type == 't
% use Coeff as threshold
homogenity _condition = ((pixel_value < region_mean + Coeff)
&&(pixel_value > region_mean - Coeff)) &&

((pixel_value_2 < region_rﬁéan_Z+ Coeff)

&&(pixel_value_2 > region_mean_2- Coeff)) &&

((pixel_value_3 < region_mean_3+ Coeff)
&&(pixel_value_3 > region_mean_3- Coeff));

else if type == 's' |,

% use Coeff as std multiplier

homogenity condition = ((pixel_value < region_mean + Coeff

&&(pixel_value > region_mean - Coeff =*region_std)) &&
((pixel_value_2 < region_mean_2+ Coeff
&&(pixel_value_2 > region_mean_2- Coeff
((pixel_value_3 < region_mean_3+ Coeff
&&(pixel_value_3 > region_mean_3- Coeff

else
if type == ‘e' ,

% use Coeff as threshold for euclidian distance
homogenity condition = sqrt((pixel_value - region_mean)
(pixel_value_2 - region_mean_2)"2 + (pixel_value_3 - regi

end
end
end
end % while (1)
if Queue_end == 0,

im_out(x, y) = mode(surrounding_regions);

*region_std)

*region_std_2)
*region_std_2)) &&

*region_std_3)
*region_std_3));

o 4
on_mean_3)"2) < Coeff;

label = label - 1;
x=0y=10
end
label = label + 1;
end % while (pixels_segmented<(im_height *im_width))

e = cputime - t;
disp(‘finished');

fprintf(1, \nElapsed time: %3.2f seconds' , e);
fprintf(1, \nNumber of segments: %i' , label-1);
fprintf(1, \nPixels segmented: %i (out of %i)\n\n’' , pixels_segmented, im_height *im_width);

C. Creation of histogram of the main region

%69%0%% %% % %% %% %% %% % %% % %% %6 %% %% %% %% % %% Y0 %8 8

%%% Function to construct histogram of each region with a siz e suffisant
%%% which are a percentage of the size of the image

%69%0% %% %% %% %% %% % %% %% %% %% % %% % %% % %% % %%
%%% Input:

0%%%%%%%

©0%%%%%%%

%%% im: Original Image

%%% segmented_image: Segmented image

%%% nbregion_im_seg: number of region of the segmented imag e
%%% percthres: Threshold to take only region superior to thi s
%%% percentage (from 0 to 1)

%%% Out:

%%% histR: Histogram Red of the image

%%% histG: Histogram Green of the image

%%% histB: Histogram Blue of the image

%%% bigregionim: image contening only nbreg (biggest regio n)
%%% nbreg: number of biggest region found

%%%%%% %% % %% %% % %% %% % %% % %% %% %% % %% %% %0 %
function [histR, histG, histB, bigregionim, nbreg] =
Create_Histogram(im,segmented_image,nbregion_im_seg ,percthres)

0%%%%% %%

%%% Compute histogram of each region

[heightim,widthim] = size(segmented_image);

%%% Allow to know the number and which are the different label s in the

%%% segmented image

vecreg = unique(segmented_image);

%%% Allocate histograms with a maximum number of nbregions

histR = zeros(256,nbregion_im_seq);

histG = zeros(256,nbregion_im_seg);

histB = zeros(256,nbregion_im_seg);

for i = l:nbregion_im_seg

for j = 1:heightim
for k = l:widthim
if (vecreg(i) == segmented_image(j,k))

histR(im(j,k,1)+1,i) = histR(im(j,k,1)+1,i) + 1;
histG(im(j,k,2)+1,i) = histG(im(j,k,2)+1,i) + 1;
histB(im(j,k,3)+1,i) = histB(im(j,k,3)+1,i) + 1;

end
end
end
histR(:,i) = histR(:,i) / (heightim * widthim);
histG(:,i) = histG(:;,i) / (heightim * widthim);
histB(:;,i) = histB(:,i) / (heightim * widthim);

end

bigregionim = zeros(size(segmented_image));

nbreg = O;
for i = l:nbregion_im_seg
sumRegionR = sum(histR(:,i));

sumRegionG = sum(histG(,i));
sumRegionB = sum(histB(:,i));
if (sumRegionR > percthres)||(sumRegionG > percthres)||(su mRegionB > percthres)
nbreg = nbreg + 1;
figure;
hold on;
subplot(211)
plot(histR(:,i), o)
hold on;
plot(histG(:,i), g)
hold on;
plot(histB(:,i), “b");
hold on;
title(['Histogram RGB of the region labelled n' , hum2str(vecreg(i))]);
hold on;

12

squareim = zeros(16,16,3);

for j = 1:256
if (histR(j,i) == max(histR(:,i)))
vall = j;
end
if (histG(j,i) == max(histG(:,i)))
val2 = j;
end
if (histB(j,i) == max(histB(:,i)))
val3 = j;
end
end
for j = 1:16
for k = 1:16
squareim(j,k,1) = vall;
squareim(j,k,2) = val2;
squareim(j,k,3) = val3;
end
end
hold on;
subplot(212)
imshow(uint8(squareim));title('Predominant color segmented');
saveas(gcf,['Hist_ Reg ' ,num2str(nbreg)], ‘g’);

for j = 1:heightim
for k = l:widthim
if (vecreg(i) == segmented_image(j,k))
bigregionim(j,k) = segmented_image(j,k);
end
end
end
end
end

D. Median filter with window 3 by 3

%%6%%%%6% %% %% %% %% %% %% %% %% %% %% %% %% %% % %8k
%%% Function to apply median filter with window 3x3
%%%% % %% % %% % %% %% % %% % %% % %% % %% %% % %% % %
%%% Input:

0%%%%% %%

©0%%%%%%%

%%% inputim: input image (1 channel only)
%%% Out:

%%% fimage: image filtered (1 channel only)
%%% nbregions: number of regions

%%%% % %% % %% % %% %% % %% % %% % %% % %% %% % %% % %0 %8
function [fimage, nbregions] = Median_Filter3(inputim)

©0%%%%%%%

%%% Apply filter with window 3 by 3
fimage = medfilt2(inputim);

%%% Count the number of regions
vecregions = unique(fimage);
[nbregions, depth] = size(vecregions);

E. Median filter with window 9 by 9

%%%%%%%% %% %% %% %% %% %% % %% %% %% % % %% % %%
%%% Function to apply median filter with window 9x9
%9%6%%%6% % %% % %% %% %% %% % %% % %% % %% % %% % %% Y0 %6848
%%% Input:

©0%%%%%%%

0%%%%% %%

%%% inputim: input image (1 channel only)
%%% Out:

%%% fimage: image filtered (1 channel only)
%%% nbregions: number of regions

%69%0%% %% % %% %% %% %% % %% % %% %6 %% %% %% %% % %% Y0 %8
function [fimage, nbregions] = Median_Filter9(inputim)

0%%%%%%%

%%% Apply filter with window 3 by 3
fimage = medfilt2(inputim, [9 9]);

%%% Count the number of regions
vecregions = unique(fimage);
[nbregions, depth] = size(vecregions);

13

