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Abstract—Principle of super resolution is to obtain high methods since the super resolution image is computed giving
resolution images from one or several low resolution images-irst  multiple low resolution images. Each low resolution image
methods aI.Iowls to recover high resolution images using sewe imposes a set of linear constraints on the unknown high
low resolution images. However, a challange was to reconstct o L >
these high resolution images from only one low resolution irmge. resolution image. If the ”“mt?er of _IOW res_olunon '_mages IS
In order to recover the missing data, the idea is to interpolee €nough (where each image gives different information due to
vanished data. In this paper, different methods are presemd the subpixel shifts), the set of equations will be largemtha

based on wavelet interpolation. An histotical overview wil be the number of unknowns and the system is determined.
given so that the reader catch the scientific evolution way ten . . )
by the researchers to face the super resolution issues. Instead of obtain super resolution image from several low

resolution images, a challenge was to generate super tiesolu
image from only with one low resolution image. Previous
. INTRODUCTION methods [1], [3], [5], [4] will lead to an under determined
system because the number of unknowns will be larger than the
Super resolution refers to techniques which allow to enbaneumber of linear constraints given by the low resolutiongea
the resolution of images. Before to go further, super régmiu In order to get round these difficulties of under determined
methods presented in this literature review will be onlydahs system affected by the restricted number of low resolution
on wavelet theory [2], [8], [10] and more precisely on watelémage, D. Glasner et al. proposed a trick based on the psopert
interpolation. of patch redundancy inside a single image [13].

In order to solve the super resolution issues which is anRecently, due of several important results by D. Donoho,
inverse problem, a foward model have to be constructed. Bh Candes, J. Romberg and T. Tao [15], [16], [17], [18],
the different papers which will be described, the foward slod[19] in the field of compressed sensing, under determined
used is the following: linear system could be solved and give sparse solution. The

wavelet domain being almost sparse, these results could be
(1) used to infer super resolution issues. J. Yang and al. pegpos
a method using the sparse representation of the waveletidoma

where D is the downsampling operataf! is the blurring in order to generate a super resolution image from only one

operator, Ej, is the affine transforms to acquire each Iov!/OW resolution image [6], [7].

resolution image anad; is an additive noisex is the high  In this paper, previous presented works will be discussed in
resolution unknown image whilé, are the different low details. Super resolution from multiple low resolution gea
resolution images. Figure 1 presents the different steps Will be presented in the first section. The advance using anly
the forward model to go from high resolution image to lovgingle frame will be introduced in the second section while a
resolution images. presentation of super resolution using compressed seaaniig
arse representation properties will be given in the ténd.

_C._Ford and D. M. Ett_er pro_posed_ a method to_mter_pol e last section will be dedicated to the different appiaz
missing values for one dimensional signal [1]. Inspired Hig t of super resolution

work, N. Nguyen and P. Milanfar proposed an extension for
interlaced one dimensial signal and two dimensional images
[3], [5], [4]. These methods can be considered as convealtion

f. = DCEX + ng

Il. SUPER RESOLUTION FROM MULTIPLE LOW
RESOLUTION IMAGES

This part is organized as follow: the first section will be

dedicated to the one dimensional case and the second section
: will describe the extension of the two dimensional case.
» ‘l I
-

A. One dimensional case

i
Figure 1. Forward transformation to go from high resolutiorage to low The method presented in this section was proposed by
resolution images N. Nguyen and P. Milanfar [3]. This work is based on the
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Figure 3. Scheme of multiresolution analysis in discreteelet transform
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Figure 2. Example of interlaced data. Points in red can beidered as jet
a frame as well as points in green and in yellow. The signallire lis the ﬂ = {()} (3)
original signal.

JELV;
VieZif f(z)eV; & f(27'z)€Vin (4)
VEeZif f(x)eVy < flx—k)eW (5)

multiresolutional basis fitting reconstruction (MBFR) inedl

from C. Ford and D. M. Etter [1]. The hypothesis assumed

by N. Nguyen and P. Milanfar was to consider the data

organized as interlaced sampling structure which will $ifyp  Moreover,IW; can be defined as the orthogonal complement
the complexity of the algorithm. For a one dimensional casef V; as:

interlaced sampling can be represented as in figure 2.

Data are not only sampling randomly but can be represented
as a set of "frames”. The transformation from one frame

to another is a simple translation. Hence, each frame gives Vieir = Ve W, (6)
information (imposes linear constraints). The principle o L*R) = @WJ— (7)
super resolution will be to find the missing data so that after jez

reconstruction, the original signal will be recovered.

In order to retrieve the "high resolution” signal, wavelet ) ) ) ) )
coefficients have to be computed. Projecting the functicio on_ The multlresolutlon. analysis can be <_:0n5|dered as shown in
a sufficient number of subspaces will lead to have a sufficidiflure 3. The spac# is the appro>j(|mat|qn space spanned by
number of wavelet coefficients in order to reconstruct tHfe scaling functionp;,(z) = 272¢(27/z — n) while the
original signal at every points wanted in the finest scaléPacelV; is the detail space spanned by the scaling function
Approximation coefficients will lead to obtain a coarselecatj,»(z) = 2724 (27 72 — n) [1].
approximation of the original signal while detail coefficis
will allow to find out the details missing after the calcutati ~ Considering this multiresolution analysis, if a functiff)
of the coarse-scale approximation. resides in the spack, this function can be decomposed as

follow:

The approximations coefficients extract from multiple low
resolution "frames” are approximately equal to the approx-
imation coefficients of the high resolution signal. Finding
these approximation coefficients, the details coefficiemts

J
be retrieve. fla) = Z asnPan(z) + Z Z djnjn(z)  (8)

j=1 n

1) Overview of multiresolution analysis and discrete
wavelet transform:Before to enter into details in the MBFR
method, an overview of the multiresolution analysis and 2) Computation of the coarse-scale approximation of the
discrete wavelet transform will be given. A multiresolutio signal: As remind in the section II-Al, a function can be
analysis inL?(R) is defined by [8]: decomposed as shown in equation (8) foraallin the case
where data are missing, only few sampigse {0,1,2, ..., p}
~CcWhccvicWwcV i c..cVCcVC.. are available. Hence the equation (8) can be written as:



Example of signal Examgle of signal

f(x()) = Zalnﬁpln Zo +szjn¢jn Io go;

: SRSV
f(xl) = Za;ncp]n &1 +szjnwjn Il us 2 2/

= 7 T NI CRNE

(a) Case when the value ofis  (b) Case when the value of is

flae) = Z ajnpin(z2) + Z Z djntjn(z2) (9) too small. The solution will be too large. The solution found will

=1 under-regularized and will not "trust” enough the samples

oscillate. given and will be too flat.

f(Ip) = Z A gnPIn :Cp + Z Z d] n?/lj n Ip Figure 4. Properties of the parameter

j=1 n

This last decomposition was the base of the work describergsolution for which the system is determined [1]. Thus, an
[1]. However, N. Nguyen and P. Milanfar included the concepipproximation of the approximation coefficients is given by
of interlaced data [3] presented on figure 2. Hence, the data
available arer;, € {0,1,2,...,p} butn times wheren will be a — (6T —1qsTfi

b Rt} 9 . . = + AI q) f 13
the number of "frames”. So equation (10) can be written: s = (2725 )5 (13)
Taking advantage of the interlaced data properties con-
tributed by [3], the equation (13) can be written as:

filao) = Zam%n o +szm¢,n1¢o

Jj=1 n n -1,
| ay = REE +/\I> o5 Tf 14
fl(xl) = ZaJngOJn ,CC1 +sz77n’(/]7n 11 J <; J J ; J ( )
1 n
g where I is the identity matrix with the same size as
fi(ze) = ZaJngan (z2) + szm% (22)20) @577 @57, The parameten is the parameter of regulariza-
j=1 n tion. Larger\ is, more regular (flat) will be the solution. The
properties of the parametex is shown on figure 4. When
fi(z,) = Zajngo,n (zp) + ZZd ko (@) the value of) is too small (figure 4(a)), the solution will be
j=1 n under-regularized and will oscillate. When the value\dé too
large (figure 4(b)), the solution found will not "trust” englu
wherei is the low resolution "frame” considered. the samples given and will be too flat.
In vector notation, the system is given by: Once the approximation coefficienés; are computed, a
coarse-scale approximation of the original signal can bme-co
_ ‘ J puted:
=5, + 3 w5, d; (11)
= fo = @8, (15)

where ®% is the matrix of shifts of the scaling function
samples at the level associated with the sample index
of the i frame f. v is the matrix of shifts of the wavelet
function samples at the level associated with the sample
index x;, of thei*" frame f. After have computed the coarse-scale approximation signal
it will be possible to compute the detail coefficients frone th
B%arsest to the finest scale. This calculation is explaineda
Jext section.

where @ ; is the matrix of shifts of the scaling function
at level J for all x of the high resolution grid. Results of
approximation is presented on figure 5.

Due of the missing data, the detail coefficiedts cannot
be computed. However, the approximation coefficients can
approximate discarding the detail part. So the system (4d)
be written as follow: 3) Computation of the detail part of the signarhe fol-

lowing equation can be deduced from the equation (11):
fl ~ ®%a; (12)
In order to solve this problem in regularized least square qu]dj =T T8 (16)
sense in the wavelet domain, the number of linear consgraint
has to be larger than the number of unknowns. So the numbeReplacinga; by the approximation computed befarg and
of "frames” have to be large enough and as discuss by C. Faatting profit of the interlaced data sampling, the equatid) (
and D. M. Etter,J is chosen to be the minimum (or finest)can be written as follow:
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(a) Blue signal is the coarse-scale (b) Blue signal is the
approximation signal while greenapproximation where one level of
signal is the approximation where detail is added while the green
one level of detail is added  signal is the approximation with
another level of detail
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Figure 5. The original signal is represented in red. The smacale il | v
approximation found using regularized least square is shiomblue. Black 2
and green dots are the data used to infer the approximat@ralsiPoints
having the same color belongs to the same "frame”.
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(c) Green signal is the final
reconstruction given by the
algorithm while the red signal is

J the original signal
s fi 53004
Z\Ijjdj B fs (I)J a (17) Figure 6. Results for different level of details and comgami with the
J=1 original signal
Hence,

n | Frame !
TS e P *‘.

v, ~ -0l ay P

& ~ fi-aa; (19) AERERE)

In the same way as in the previous section [I-A2, a solution= — +_ * Lot _
can be inferred in regularized least square sense and wil le -
to formalize as follow:

(a) Interlaced data in the two  (b) Example of interlaced data
dimensions case after registration of low resolution
images where black pixels will
have to be interpolated

n -1 5

3 s(0)T 1,8(2) s()T g

d; = Z vyt AL Z vy & (20) Figure 7. Interlaced data in the two dimensions case
i=1 i=1

Where\IJf,(i) is the matrix of shifts of the wavelet function ] )
samples at the level associated with the sample index of B- Two dimensional case
the i*" error framee’.

Once the detail coefficients are found, an approximationN- Nguyen and P. Milanfar extend the one dimensional case

signal can be update as follow: presented in the previous section (lI-A) to the two dimenalo
case for images [3], [5], [4].

fi=fo+U,d, (21) They assumed in the same way that the data given by low
resolution images are interlaced sampling as shown in figure

Results of the approximation signal are shown on figuig
6(a).

Replacingf, by f; and repeating the same manipulation 1
the next finer scaleJ — 1), it will be possible to add one
level of detail more and so on until achieving the finest scaiﬁ
possible. Results of the approximation signal are shown
figure 6(b) while final results are presented on figure 6(c). di

ultiresolutional analysis and discrete wavelet tramsfoBo

A Matlab implementation is given in appendix A. interlaced two dimensional images will be introduced.

Each low resolution image has to be translated to give
ough new information about the scene to create the high
esolution image. As previously, the method is based on

fst, a complement of discrete wavelet analysis for the two
mensional case will be given. Then, the interpolation for



VP =viav (23)

And the two dimensional scaling function can be decom-
posed into two one dimensional scaling functions(horiabnt
and vertical):

(a) Original image (b) Example of low resolution
image Piki(t,s) = 0jk(t)psi(s) (24)

The two dimensional wavelet function will be decomposed
into three dimensional wavelet function (horizontal, icat
and diagonal):

Pt s) = o(s)jrtb(t)j

et = ; t); 25
(c) Coarse approximation image (d) Coarse approximation image J’k’l( ’S) w(S)J"kw( )J’l ( )
with addition of horizontal details ;'i.,k.,l(tv s) = Y(s)x(t);.

I
Thus the equation 22 can be written as:

ZGJM%, )esi(s)

h
o o + Z > dl e 0(8) k()5
(e) Coarse approximation image (f) Coarse approximation image 1 r
with addition of horizontal detailswith addition of horizontal details, J=
and vertical details vertical details and diagonal details J
v
. o . . DD Y (s)jwe(t) (26)

Figure 8. Results obtained with the algorithm described j_l ol

Z Z dg k, 1(8)j.(t)j,0
Jj=1k

C. Multiresolution analysis and discrete wavelet trangfdor
two dimensional images

The multiresolution analysis and wavelet transform for Hence, re-writing the equation (11) for the two dimensional

case:
two dimensional images are just an extension of the one

dimensional case. In this section, only modifications campa

to the one dimensional case will be presented. . s(i) s(i)

_ . f@ = (<I> ® ®5")ay
As presented in [8], [10], [12], the decomposition of an

image in the wavelet domain is about the same. The main +

changes lie in the two dimensions of the wavelet family

(scaling and wavelet function). Now, the translation is ool

in one dimension but in the two directiom @ndy). +

(@) (5),1 @ W) (1))t

J

-

<
Il
—

(U0 (s)50 © (1))l

J

-

(27)

<
Il
—

Hence, the main change is in the equation (8) which will

be now: . .
(T (s)50 @ W) (1) )d]

J

+

M-

<
Il
—

J
Zamup”l (t,s +ZZ kiiri(t,s) (22)  where® are the matrices of shifts of the different scaling
J=1 k,l functions samples associated with tife frame fi. ¥ are the
matrices of shifts of the different wavelets functions s&sp
In the case of wavelet families which are separable, Mallassociated with th&¢” frame fi. The symbolz represents the
deduces that the two dimensional spé@@ is equivalent to Kronecker or tensor product. This product is used in order to
the tensor product of the one dimensional speg¢2], [10], have a matrix with all possibilities of translation after ngieg
[12]: two matrices (scaling or wavelet functions).



1) Computation of the coarse-scale approximation of the Figure 8(d) shows a coarse approximation image where the
image: As shown in the one dimensional case (section II-A2horizontal details were added.
a coarse-scale approximation image can be computed in th%{eplacing fo by f;

) ) and recomputing the residuals, the
same way and the equation (12) can be written as:

vertical and diagonal details will be obtain:
fi ~ (@5 © &5 Ma, (28) , ‘ R
(D (s)e ® @O (1);,)dy ~f; —fo

i i
e ~ fi—f

U

The approximation coefficients; can find in a regularized

34
least square sense and as shown in equation (14): (34)

—

i=1 g
n

n —1 n -1
. . . . U s(0)T . s(i s(2)T xs(z
a = (Z@i%i% @ (@37 5) +M> dy = <Z<%i> i) @ (@5 <1>Ji>>+n>
W

Jt
- (23" w@3T) F (29) < (v eer) e, (35)

1 i=1

.
Il

Once the approximation are computed, an coarse-scale apReplacingfy by f;:
proximation image can be computed as in the one dimensional
case (equation (15)): ‘ ‘ e
(WO () © wO@d) ~F T
#5(9)

fo = (@) 2 of)") & (30) ¢ ~ f—1 (36)

Figure 8(c) shows the result of a coarse approximation

. —1
image. d n , , , ,
o ()T 1,5(2) s(4)T 1,8(2)

When the approximation coefficients have been computed,dJ - _71(\11‘” W) ® (07 W) + M)

the detail coefficients can be computed too. N
s(i)T s(2)T i

2) Computation of the detail part of the imageéis in X (‘I’J(t) ER )ed (37)

the one dimensional case, detail coefficients are computed i=1

using the residuals (error between the approximation aed th pegyits with vertical and diagonal details added are shown
different low resolution images). The difference in the tW?espectiver on figure 8(e) and figure 8(f).

dimensional case compared to the one dimensional is thes thr
different kind of details will be computed at each scale leve
horizontal, vertical and diagonal. Thus, first horizontatadl
coefficients will be computed as: I1l. SUPER RESOLUTION FROM A SINGLE LOW
RESOLUTION IMAGE

A Matlab implementation is given in appendix B.

(@5 (s)jt ® ps() (1)) ~ i — ((I)sJ(ti)T ® @;(;)T) a, In_the previous section I, in ord(_ar to obtain an overde-
_ _ termined system, several low resolution images where rieede
e, ~ f - ((I)f,(j)T ® @j(;)T) ay (31) and each low resolution image give linear constraints ag/sho

in figure 9(a). D. Glasner et al. proposed a method where only

In the same way as in the section 11-A3, the horizontal detdl Single low resolution image will allow to generate a super
coefficients will be computed using regularized least sguaiesolution image [13].

methods:
A. Patch redundancy inside a single frame at different scale
n -1 . . . . .
N s()T 4.5(4) 5(8)T vy, 5(0) Glasner et al. find out that considering a patch in the orlgina
d; = < (D5 @) @ (W5 Uy )+/\I> image, similar patch can be found inside the same image
1=1

M (figure 9(b)). Pushing the concept further, it will be possib
% Z DT o ysOT) g (32) to find similqr patche; at_ different scales (lower scale)sTh
Jt Js h
Py redundancy is shown in figure 9.
Glasner et al. analysed on a wide images database the per-
ntage of recurrent patches through different scalesulRes
are shown in figure 10. Figure 10(a) shows that the percentage
of recurrent patches at different scales is very importaahe

f = fo+ (@0 (s); @ WO(1))d, (33) at a low scale. In order to see if details so high frequency

Then, details will be added to the coarse approximation )
give a new approximation which will be finer:
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(a) Super resolution using multiple  (b) Super resolution using

low resolution images. At the sameecurrent patches properties. Due
location for each low resolution  of the redundancy of patches
image, the pixel considered will inside the same image, different

give information to generate thelocations inside the image can give
high resolution image

linear constraints in order to
generate the high resolution image

(c) Patch redundancy at the (d) Patch redundancy at the scale
original scale. Red patch is the 1.25~!. Red patch is the model
model patch while blue patches ar@atch while blue patches are the
the nearest neighbour of the modeihearest neighbour of the model
patch patch

(e) Patch redundancy at the scaléf) Patch redundancy at the scale

1.25—2. Red patch is the model 1.25—3. Red patch is the model

patch while blue patches are the patch while blue patches are the

nearest neighbour of the model nearest neighbour of the model
patch patch

(g) Patch redundancy at the scal¢h) Patch redundancy at the scale

1.25-%4. Red patch is the model 1.25-6. Red patch is the model

patch while blue patches are the patch while blue patches are the

nearest neighbour of the model nearest neighbour of the model
patch patch

Figure 9. Patch redundancy at different scales
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Figure 10. Patch redundancy at different scales
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Figure 11. Combining method proposed by Glasner et al. [13]

could be recover from these redundancies, they analysed the
redundancy patches on the high texture location of the image
at different scales. The results are shown on the figure 10(b)
The percentage of recurrent patches at low scale only remard
high texture is still large. They concluded that the redumoga

of patches will add linear constraints using the same image a
different scales.

B. Scheme of super resolution using patch redundancy

The method proposed by Glasner et al. is illustrated in figure
11. Patches are defined in the low resolution image (dark red
and dark green patches). For a scale smaller than the low
resolution image, similar patches of the initial patches ar
found (light red and light green patches). These last patche
will bring more linear constraints in order to solve a claasi
super resolution problem. The information of these patches
will be weighted by the similarity with orginal patches. Hee
low scale patches will be copied in order to estimate theisupe
resolution image. An example of result of this method is show
on figure 12.

IV. SUPER RESOLUTION USING COMPRESSED SAMPLING
AND SPARSE REPRESENTATION

The method proposed by Glasner et al. [13] gives good
results. However, the purpose of this method was not to break



(a) Original image (b) Low  (c) High resolution image
resolution reconstruct using the
image algorithm

] ] ] Figure 13. Results of the method proposed by J. Yang et al[1§]
(a) Low resolution (b) Super resolution generated by the algorithm

image
Figure 12. Results of the method proposed by Glasner et 3]. [1 resolution image and’ is a linear feature extractor operator.

Another constraint is that all different patches found ia th
the issue of under determined system which cannot be 50”%{%2:_832'#2;“ tlr?; ag\elef;a/s tboett\)/\(/eeaesn ngsrzsfgttcisvsnolszft?aizn
Recently, due of several important results by D. Donohin consideration as each new patch will be compatible with
E. Candes, J. Romberg and T. Tao [15], [16], [17], [18], [1%he previous patch computed. This constraint is added to the
in the field of compressed sensing, under determined linggjuation (39) and can be written:
system could be solved and give sparse solution. This approa
gives a new impetus to the field of super resolution.

Due of the non-sparsity of the spatial domain of the im- min o, st [FDa — Fyl < e
age, compressed sensing cannot be apply directly. However, |PDya — w||§ < ey (40)
generally images in the wavelet domain are mostly sparse.
Hence, compressed sensing dpnchormalization can be used wherea are the wavelet coefficientd); is the dictionary
to recover high resolution image from a single low resolutiofor low resolution decompositiorny is the patch in the low
image. resolution image and’ is a linear feature extractor operator.

The method which will be presented was introduced bg'e matrix P extracts the_ region of overlap betvyeen the
J. Yang [6]. In this section, only the part corresponding t urrent patch and the precious computed patch-arid the

the resolution of the super resolution issues will be presken matrix containing the values of the previous patch computed

Hence, the preparation of dictionaries will not be expldine As in the section Il, a regularized linear estimator will be
For more information regarding the dictionaries creatithe, used using a parametarwhich will have the same kind of
reader can consult the article [6], [7]. effect on the solution. This parameter will balance between

Compressive sensing can give sparse solution using H?S Sp?‘fs't.y level of the solution and the f@ehty of the
wavelet domain. Considering a high resolution image X approximation toy. Hence, the system which will be solved

can be decomposed of several patchesHence, the high is the following:
resolution image can be decomposed in the wavelet domain

. . 1= 2
as: min A [[a, +§HD04—?JHQ (41)
r = Dpa (38)  whereD = | fPr andy = Fy | B will balance
BPDy, . o )
where o represents the wavelet coefficients abg rep- between matching the Tow resolution input and finding high

resents the dictionary used to decompose the high reselutigsolution patch which is compatible with its neighbor.

image. The idea of the algorithm proposed is to approximateTo reconstruct the high resolution patch, the estimation
« knowing that the vector should be sparse. found can be injected inside the equation (38). Resultsisf th

In fact, only low resolution image is available. Hence, thalgorithm are presented on figure 13.
goal will be to infer each high resolution patch from each low
resolution image using the wavelet coefficients. Henckave V. APPLICATION
to be approximated such thatis the sparsest as possible and
the difference between the estimation and the real data is aghus, the advantage of super resolution algorithm is that
small as possible. This problem can be formalized as: using only one or several low resolution images, a high
resolution image of the scene can be computed.

min [[al[;, S.t. [|[FDjo — Fy||§ <e (39) Hence, it is very obvious that super resolution algorithm
can be used to speed up and enhance the quality of images
where a are the wavelet coefficientd); is the dictionary for all type of real-time applications. Moreover, the co$t o
for low resolution decompositiony is the patch in the low the sensors produced to acquire low resolution images ss les



(6]

(8]

[10]

[11]
(a) Low resolution image (b) High resolution image
computed [12]
Figure 14. Results of the super resolution in astronomyrglye R. Willet  [13]
et al.[14]
[14]

expensive than high resolution sensors. The architecttire
sensors will be less complex. Miniaturization of elements
inside sensors will be less important leading to a financiﬁ%]
gain.

Nowadays, super resolution was used also in astronomyy
Images acquired in astronomy are usually low resolution and
blurred due of physics limitations. Results of super retotu

image are presented on figure 14 18]
[19]
VI. CONCLUSION [20]

In this paper, an historical overview of super resolution
was given. First, a classical super resolution algorithns wa
presented. In this case, multiple low resolution imagesewer
needed in order to generate a high resolution image. We
focus more in details on this method than the other methods
presented after that. Then, methods using only one low reso-
lution image was presented. The first method was a method
which use a patches based super resolution at differerg scal
in order to find more linear equations so that to have an
over determined system. The second solution is based on the
discoveries in the field of compressed sensing which allow to
find a sparse solution to under determined system which is
the case of super resolution in the wavelet domain. Finally,
we presented a short section regarding the applicationiseof t
super resolution.
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APPENDIXA
IMPLEMENTATION OF ONE DIMENSIONAL CASE SUPER RESOLUTION

A. Main file

9%6%0% %% %% %% %% % %% %% %% %% %% %% %% % %% %% %% %
%%% Guillaume Lemaitre

%%%0%%%%

B

%%% This function is an implementation of the 1D super resolu tion presented
%%% by:

%%% C. Ford and D. M. Etter, Wavelet Basis Reconstruction of N onuniformly

%%% Sampled Data, IEEE TRANSACTIONS ON CIRCUITS AND SYSTENSANALOG AND
%%% DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 8, AUGUST 1998

%%% and

%%% Nhat Nguyen and Peyman Milanfar, A Wavelet-Baset

%%% interpolation-restoration method for super resolutio n (Wavelet Super
%%% Resolution), Circuits System Signal Process, VOL. 19, N 0. 4, 2000, pg
%%% 321-338

L

%%%%%0% %% %% %% %% % %% %% %% %% % %% %% %% %% % %

%%%%%%%

clear all;
close all;
clc;

%%% %% %% %% %% % %% %% %% %% % % %% %% %% % % %% %% %
%%% Paramters

%%% Total numbers of points

nbPoints = 200;

t0 = 0;

tmax = 10;

%%% Factor of downsampling

factorDW = 4;

%%% Number of images which have to be considered
nblmages = 3;

%%% Color vector

el el e L el el 0%%%%% %%

colorVector = [ B S o B Y IR 211 N & [
%%% Wavelet family
filter = 'db6" ;

lengthSupport = 11,
%%%6%%% %% %% %% %% %% % %% %% %% %% %% %% %% % %% %

0%%%%% %%

%9%6%%%6%%%6% %% %% %% %% %% %% %% %% % %% %% % %% Yo %8k
%%% Generation of a synthetic signal

%%% Original Signal:

xOriginal = 1:nbPoints;

0%%%%% %%

%fOriginal = cos((2 *pi * xOriginal). * ((tmax-t0)/nbPoints)). * (sqrt(xOriginal). * ((tmax-t0)/nbPoints))
% + sin((5 =pi *xOriginal). * ((tmax-t0)/nbPoints) + 10). * (sqrt(xOriginal). * ((tmax-t0)/nbPoints));
fOriginal = sin(xOriginal. * ((tmax-t0)/nbPoints)) + sin(5 *xOriginal.  *((tmax-t0)/nbPoints) + 10)

+ cos(3 *xOriginal.  *((tmax-t0)/nbPoints) + 10);

figure(1);

subplot(321); plot(xOriginal,fOriginal);

title(  'Original synthetic signal' );

%9%6%% %% % %% % %% % %% % %% % %% % %% % %% %0 %% %0 %% Y0 %6848
%%% Compute the different frames
%%% Compute the downsampling signal

%%%0%%%%

[xLowResolution,fLowResolution] = frameCreation(xOrig inal,fOriginal,factorDW);
for i = l:factorDW
subplot(322);hold on;plot(xLowResolution(i,:),fLowRe solution(i,:), num2str(colorVector(i,:)));
end
title(  'Different frames after random sampling' );

%9%0%%9%0%%9%% % %% % %% % %% % %% % %% % %% % %% % %% % %

0%%%%% %%

%%%%%%%% %% % % %% %% %% %% %% %% %% %% % % %% %% %
%%% Wavelet reconstruction using only Low Resolution data
QYU —mmmmmmmmmmmmmmmm e e

%%% In this first part, we will only compute a coarse approxim ation of the
%%% signal

Q0Y0Y0 —m-mmmmmmmmmmmmmmm e e

0%%%%% %%




WWN - e
%%% Parameters

%%% Compute the scaling and wavelet function

[phi,psi,xval] = wavefun(filter,10);

%%% Scale where we will estimate the coarse signal

J =2

k = floor(-lengthSupport + 2°(-J) *x0riginal(1)) + 1:2°(-J) * xOriginal(length(xOriginal));

%%% Preallocation
GJs = zeros(length(xLowResolution), length(k));

for i = l:nblmages
P

%%% Compute the matrix contaning the shift of the scaling fun ction at
%%% the different points knew

for j = l:length(xLowResolution)
count = 1;
for k2 = k(1):k(length(k))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,J,k2);
ind = find((xLowResolution(i,j)==xvals));
if (—isempty(ind))
GJs(j,count) = phis(ind);

end
count = count + 1;
end
end
QYYD -wmmmmrmmmmmmmmemmmmemmmmemmnemmemneneeee e
%%% Compute the approximation coefficient in a Regularized Least-Squares
%%% sense
lambda = 0.01;
if (==1)
leftPart = GJs' *GJs + lambda. *eye(size(GJs'  *GJs));
rightPart = GJs' * fLowResolution(i,:)";
else
leftPart = leftPart + (GJs' *GJs + lambda. *eye(size(GJs'  *GJs)));
rightPart = rightPart + (GJs' * fLowResolution(i,:)");
end

end

approCoefficient = (leftPart\rightPart);

QYN —--mmmmmmmmm s e
%%% Compute the coarse approximation

%%% Preallocation

GJ = zeros(length(xOriginal), length(k));

R
%%% Compute the matrix contaning the shift of the scaling fun ction at
%%% the different points wanted

for j = l:length(xOriginal)
count = 1;
for k2 = k(1):k(length(k))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,J,k2);
ind = find(xOriginal(j)==xvals);
if (—isempty(ind))
GJ(j,count) = phis(ind);
end
count = count + 1,
end
end

WWOW —---m--mmmmmmmmmmmm e e
%%% Computation of the approximation curve
fO = GJ rapproCoefficient;

R
%%% Plot the result of the approximation
subplot(323);
for i = l:nblmages
%%% Plot the point used for the approximation
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hold on;

plot(xLowResolution(i,:),fLowResolution(i,:), num2st r(colorVector(i,:)));

end

%%% Plot the coarse curve

hold on;

plot(xOriginal,f0);

titte(  'Coarse approximation and data used to obtain this approxim ation'
%%% Plot the approximation curve and the original curve

subplot(324);

%%% Plot the original curve
plot(xOriginal,fOriginal,

%%% Plot the coarse curve
hold on;

tmp = fO;

plot(xOriginal,tmp);

title(  'Coarse approximation (blue) - Original approximation (re d) );

9%0%%%%%%% %% %% %% %% %% %% %% %% %% % %% %% %0 %0 %0 %648
%%% Wavelet reconstruction - Reconstruction of the differe nt level of
%%% details

for i = J-1:1
clear leftPart;
clear rightPart;

%%% Preallocation
Hjs = zeros(length(xLowResolution), length(k));

%%% Compute the error between the approximation and the sign al at the

%%% sampling points
error = zeros(nblmages,length(xLowResolution));
for j = l:nblmages

for a = l:length(xLowResolution(j,:))

error(j,a) = fLowResolution(j,a) - fO(xLowResolution(j, a));
end
end
QWY —---mmmmmmmmmmmmmmmm e e
%%% Compute the matrix contaning the shift of the wavelet fun ction at
%%% the different points knew
for | = l:nblmages
for j = l:length(xLowResolution)
count = 1;
for k2 = k(1):k(length(k))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,i,k2);
ind = find((xLowResolution(l,j)==xvals));
if (—isempty(ind))
Hjs(j,count) = phis(ind);
end
count = count + 1;
end
end
QWK —---mmmmmmmmmmmmmmmmm e e
%%% Compute the approximation coefficient in a Regularized Least-Squares
%%% sense
lambda = 0.001;
if (I==1)
leftPart = Hjs' *Hjs + lambda. =*eye(size(Hjs' * Hjs));
rightPart = Hjs' =error(l,:)";
else
leftPart = leftPart + (Hjs' *Hjs + lambda. =*eye(size(Hjs' * Hjs)));
rightPart = rightPart + (Hjs' = error(l,:)");
end
end

detailsCoeff = (leftPart\rightPart);

QYYD —--mmmmmmmmmmmm e e
%%% Compute the coarse approximation

%%% Preallocation

Hj = zeros(length(xOriginal), length(k));

YWY -mmmemmmmemmmmemmmmemmeeeeee e

0%%%%% %%
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%%% Compute the matrix contaning the shift of the scaling fun ction at
%%% the different points wanted

for j = 21:length(xOriginal)
count = 1,
for k2 = k(1):k(length(k))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,i,k2);
ind = find(xOriginal(j)==xvals);
if (—isempty(ind))
Hj(j,count) = phis(ind);
end
count = count + 1;
end
end

QWK —---m-mmmmmmmmmmmm e e
%%% Computation of the details curve
fl = f0O + Hj =*detailsCoeff;
fo = f1,
end

%9%%% %% % %% % %% % %% % %% % %% % %% % %% %0 %% %0 %% %0 %

%%% Plot the details on the last plot

subplot(325);

plot(xOriginal,tmp, b );

hold on;

plot(xOriginal,f1, g )

title(  'Coarse approximation (blue) - Final Estimation (green)' );

%%%%%%%

subplot(326);
plot(xOriginal,fOriginal,

hold on;

plot(xOriginal,f1, g )
title(  'Final Estimation (green) - Original approximation (red)' );

B. Function to compute the different wavelet family

function [phist,psist,xvalst] = computeScaleTranslateWavelet(p hi,psi,xval,scale,translation)

%9%0%% %% % %% %% %% %% % %% % %% % %% % %% % %% % %% %69
%%% Guillaume Lemaitre

B

%%% This function allows to compute the scaling function and the wavelet
%%% function at different scale and translation

%%%  ----mmmmmmme e

%%% Input:

%%% phi: original scaling function

%%% psi: original wavelet function

%%% xval: time discretisation vector

%%% scale: factor of rescaling

%%% translation: factor of translation

%%%  --------m--mm--mmnome-

%%% Output:

%%% phist: scaling function to the new scale and translated

%%% psist: scaling function to the new scale and translated

%%% xvalst: time value connected to the scaling and translat ed function
%9%6%% %% % %% % %% % %% % %% % %% % %% % %% %0 %% %0 %% %0 %6848

%%%%% %%

%%%0%%%%

xvalst = 2°(scale). *xval;
xvalst = xvalst + repmat(2°(scale) +translation , [ 1 , length(xval) 1);
phist = 2°(-scale/2). * phi;
psist = 2°(-scale/2). * psi;
APPENDIX B

IMPLEMENTATION OF TWO DIMENSIONAL CASE SUPER RESOLUTION
%69%0%%%6% % %% %% %% %% %6 %% %% % %% % %% %% %% %6 %% Y6 %8%B48%8%B0%8%040%0%048%6%8%8%6%0%0 %6 %% % %%
%%% Guillaume Lemaitre
B
%%% This function is an implementation of the 2D super resolu tion presented

%%% by:

13



%%% Nhat Nguyen and Peyman Milanfar, A Wavelet-Baset

%%% interpolation-restoration method for super resolutio n (Wavelet Super
%%% Resolution), Circuits System Signal Process, VOL. 19, N O. 4, 2000, pg
%%% 321-338

VYo% --mnmmrmmmmmmmemmmnennnn

9%6%0%% %% %% % %% % %% %% %% % %% %% % %% % %% %% %% % ©%%%%% %%
clear all;

close all;

clc;

%%%% %% % %% % %% %% % % %% %% %% % % %% %% %% %% % %
%%% Parameters

%%% Add directories

addpath( 'data/original’ );

addpath( 'data/Low Resolution' );

©0%%%%%%%

%%% Factor of downsampling

factorDW = 4;

%%% Number of images which have to be considered
nblmages = 10;

%%% Color vector

colorVector = [ K S o I VA e L S G
%%% Wavelet family
filter = ‘db4"

lengthSupport = 7;
%9%6%% %% % %% %% %% %% % %% %% %% %% %% %% % %% %% Y0 9%

0%%%%% %%

9%0%%%%% %% %% %% %% %% %% %% %% %% %% %% % %% %% %0 %8
%%% Intialisation

0%%%%% %%

%%% Read the low resolution images

for i = l:(factorDW  *factorDW)
imagesLR(:,:,i) = im2double(imread([ 'data/Low Resolution/image' , numa2str(i) , "bmp’
if (i ==

%%% Compute the size of the LR images
[heigthLR , widthLR] = size(imagesLR(:,:,1));
end
%%% Compute the pixel correspondance of each image
for j = 1:heigthLR
for k = LiwidthLR
%%% For the horizontal pixel

corrindexLR(j,k,i,1) = (( - 1) xfactorDW + floor((i - 1)/factorDW)) + 1;
%%% For the vertical pixel
corrindexLR(j,k,i,2) = ((k - 1) *factorDW + mod((i - 1),factorDW)) + 1;
end
end
end
imwrite(imagesLR(:,:,1), 'LR.bmp" , 'bmp' );

%%% Read original picture

%%% Read the image

originallmage = im2double(rgb2gray(imread( 'data/original/image.jpg' )
subplot(232);

imshow(originallmage);

title(  'Original Image' );

%%% Create a random array to select n low resolution images
tmp = randperm(factorDW  *factorDW);

indeximagesLR = tmp(1l:nblmages);

indexlmagesLR = sort(indexImagesLR);

clear tmp;

%%% Compute the quasi image
count = 1;
for i = l:nblmages
for j = 1:heigthLR
for k = LiwidthLR

%%% Compute the position in a row

row = ((j - 1) +factorDW + (floor((indeximagesLR(i) - 1)/factorDW))+1);
col = ((k - 1) =factorDW + mod((indexImagesLR(i) - 1)factorDW))+1;

count = count + 1;

%9%0%%%% %% %% % %% % %% % %% % %% %%

quasiHighResolutionimage(((j - 1) *factorDW +
(floor((indexlmagesLR(i) - 1)/factorDW))+1)

D)
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, ((k - 1) =+factorDW + mod((indexImagesLR(i) - 1)factorDW))+1) =
imagesLR(j,k,indexImagesLR(i));
end
end
end

imwrite(quasiHighResolutionimage, ‘quasi.omp’ , 'bmp' );

%%% Plot an example of low resolution image

subplot(231);
imshow(imagesLR(:,:,1));
titte( 'Example of low resolution images' );

%%%%0%0%%%%%%% %% %% %% %% %% %% %% %% %% %% % %%

%%%%%%%

%09%%%%%% % %% % %% % %% %% % %% % %% % %% %% % % %% % %8

%%% Wavelet reconstruction using only Low Resolution data

B e

%%% In this first part, we will only compute a coarse approxim ation of the
%%% signal

R

0%%%%% %%

QYN —--mmmmmmmmm e e
%%% Parameters

%%% Compute the scaling and wavelet function

[phi,psi,xval] = wavefun(filter,10);

%%% Scale where we will estimate the coarse signal

J =2

lambda = 0.0001,;

%%% Compute the translator vector for the horizontal and ver tical direction
kHorizontal = floor(-lengthSupport + 2°(-J)) + 1:27(-J) * (size(imagesLR(:,:,1),1) *factorDW);
kVertical = floor(-lengthSupport + 2°(-J)) + 1:27(-J) * (size(imagesLR(:,:,1),2) *factorDW);
%%% Preallocation
GJhs = zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
GJvs = zeros(size(imagesLR(:,:,1),2), length(kVertical ));
for i = l:nblmages
L
%%% Compute the matrix contaning the shift of the scaling fun ction at

%%% the different points knew
%%% Horizontal scaling function

for j = 1l:size(GJhs,1)

count = 1;

for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,J,k2);
ind = find(corrindexLR(j,1,indexImagesLR(i),1)==xvals );

if (—isempty(ind))
GJhs(j,count) = phis(ind);
end
count = count + 1;
end
end

%%% Vertical scaling function

for j = 1l:size(GJvs,1)

count = 1;

for k2 = kVertical(1):kVertical(length(kVertical))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,J,k2);
ind = find(corrindexLR(1,j,indexImagesLR(i),2)==xvals );

if (—isempty(ind))
GJvs(j,count) = phis(ind);
end
count = count + 1;
end
end

if (i ==
leftsum = kron((GJhs' *GJhs),(GJvs' *GJvs)) + lambda. *eye(size(kron((GJhs' * GJhs),(GJvs'
tmp = imagesLR(;,:,indexImagesLR(i))";
rightsum = kron(GJhs',GJvs') *tmp(:);
else
leftsum = leftsum + kron((GJhs' *GJhs),(GJvs' *GJvs)) +

* GJvs))));
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lambda. *eye(size(kron((GJhs' *GJhs),(GJvs'  *GJvs))));
tmp = imagesLR(;,:,indexImagesLR(i))’;
rightsum = rightsum + kron(GJhs',GJvs') *tmp(:);
end

end

%%% Computation of the approximation coefficient
approCoeff = (leftsum\rightsum);

QYN —--mmmmmmmmm s e
%%% Compute the coarse approximation
%%% Preallocation

GJh = zeros(size(imagesLR(:,:,1),1) *factorDW, length(kHorizontal));

GJv = zeros(size(imagesLR(:,:,1),2) *factorDW, length(kVertical));

WWN - e
%%% Compute the matrix contaning the shift of the scaling fun ction at

%%% the different points wanted
%%% Horizontal scaling function

for j = l:size(GJh,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,J,k2);
ind = find(j==xvals);
if (—isempty(ind))
GJh(j,count) = phis(ind);
end
count = count + 1,
end
end

%%% Vertical scaling function

for j = l:size(GJv,1)
count = 1;
for k2 = kVertical(1):kVertical(length(kVertical))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,J,k2);
ind = find(j==xvals);
if (—isempty(ind))
GJv(j,count) = phis(ind);
end
count = count + 1,
end
end

R
%%% Computation of the approximation curve
fo = (kron(GJh,GJv) * approCoeff);

coarseApproximation = reshape(fO,widthLR *factorDW,heigthLR  *factorDW)';
%%% Plot the result of the approximation

subplot(233);

imshow(coarseApproximation);

title(  'Coarse approximation' );

imwrite(coarseApproximation, ‘coarse.bmp' , 'bmp' );

0%%%%% %%

%%%%%%%%%%%% %% % % %% %% %% % % % %% %% %% % % %0 %8
%%% Wavelet reconstruction - Reconstruction of the differe nt level of
%%% details

lambda = 0.1;

for scale = J:-1:1

%%% Compute the translator vector for the horizontal and ver tical direction

kHorizontal = floor(-lengthSupport + 2°(-J)) + 1:27(-J) * (size(imagesLR(:,:,1),1) *factorDW);
kVertical = floor(-lengthSupport + 2°(-J)) + 1:27(-J) * (size(imagesLR(:,:,1),2) *factorDW);
%%% Preallocation

Gjhs = zeros(size(imagesLR(:,:,1),1), length(kHorizont al));

Gjvs = zeros(size(imagesLR(:,:,1),2), length(kVertical ));

Hjhs = zeros(size(imagesLR(:,:,1),1), length(kHorizont al));

Hjvs = zeros(size(imagesLR(:,:,1),2), length(kVertical ));

Gjh = zeros(size(imagesLR(:,:,1),1) *factorDW, length(kHorizontal));

Gjv = zeros(size(imagesLR(:,:,1),2) *factorDW, length(kVertical));



Hjh
Hjv

= zeros(size(imagesLR(:,:,1),1) *factorDW, length(kHorizontal));
= zeros(size(imagesLR(:,:,1),2) *factorDW, length(kVertical));

clear leftsum;
clear rightsum;

Gjhs
Gjvs
Hjhs
Hjvs

%%% Create some low resolution images of the approximation i mage to
%%% compute the low resolution errors image
%%% Preallocation
approlmagesLR = zeros(size(imagesLR));
for a = O:(factorDW - 1)
for b = O(factorDW - 1)
| .

= 1
for c = (1 + a):factorDW:heigthLR * factorDW
for = (1 + b):factorDW:widthLR * factorDW
approlmagesLR(row,coI, ((a * factorDW) + b) + 1) = coarseApproximation(c,d);
col = col + 1,
end
row = row + 1;
col = 1;
end

end
end
%%% Compute the erros for every images
errorimages = imagesLR - approlmagesLR,;

for i = l:nblmages
R

%%% Compute horizontal, vertical scaling function and also horizontal,
%%% vertical wavelet function

%%% Horizontal wavelet function

= zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
= zeros(size(imagesLR(:,:,1),2), length(kVertical ));
= zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
= zeros(size(imagesLR(:,:,1),2), length(kVertical ));
for j = l:size(Gjhs,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(corrindexLR(j,1,indexImagesLR(i),1)==xvals );

if (—isempty(ind))
Gjhs(j,count) = phis(ind);
end
count = count + 1;
end
end

%%% Vertical scaling function

for j = Ll:size(Hjvs,1)

count = 1;

for k2 = kVertical(1):kVertical(length(kVertical))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(corrindexLR(1,j,indexImagesLR(i),2)==xvals );

if (—isempty(ind))
Hjvs(j,count) = psis(ind);
end
count = count + 1;
end
end

9%0%%%%%%%0%0% %% %% %%0% % %% %% %0 %% % %% %% %% % %
%%% Detect horizontal details

if (i ==
leftsum = kron((Gjhs' * Gjhs),(Hjvs' *Hjvs)) + lambda. *eye(size(kron((Gjhs' * Gjhs),(Hjvs'
tmp = errorimages(:,:,indexImagesLR(i))";
rightsum = kron(Gjhs',Hjvs") *tmp(:);
else
leftsum = leftsum + kron((Gjhs' * Gjhs),(Hjvs' * Hjvs)) +

lambda. *eye(size(kron((Gjhs' +Gjhs),(Hivs'  *Hjvs))));
tmp = errorimages(:,:,indeximagesLR(i))";

* Hjvs))));
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rightsum = rightsum + kron(Gjhs',Hjvs') *tmp(:);
end
end

%%% Computation of the approximation coefficient
detailsHCoeff = (leftsum\rightsum);

9%9%%%%% % %% % %% % %% % %% % %% % %% % %% % %% % %% %
%%% Compute the horizontal image

Q0Y0Yh —mmmmmmmmmmmemmeeemmmeemeeeeeeeeeeeees e
ction at

%%% Compute the matrix contaning the shift of the scaling fun
%%% the different points wanted
%%% Horizontal wavelet function

for j = 1l:size(Gjh,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi,
ind = find(j==xvals);
if (—isempty(ind))
Gjh(j,count) = phis(ind);
end
count = count + 1;
end
end

%%% Vertical scaling function

for j = 1l:size(Hjv,1)
count = 1;
for k2 = kVertical(1):kVertical(length(kVertical))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi,
ind = find(j==xvals);
if (—isempty(ind))
Hjv(j,count) = psis(ind);
end
count = count + 1;
end
end

%%% Compute the new image with horizontal details

fl = f0 + (kron(Gjh,Hjv) * detailsHCoeff);

horizontalApproximation = reshape(fl,widthLR * factorDW,heigthLR
%%% Plot the result of the approximation

subplot(234);

imshow(horizontal Approximation);

title(  'Horizontal approximation' );

imwrite(horizontal Approximation, ‘horizontal.bmp' , '‘bmp' );

fo = f1,

coarseApproximation = horizontalApproximation;
clear leftsum;
clear rightsum;

%%% Create some low resolution images of the approximation i
%%% compute the low resolution errors image
%%% Preallocation
approlmagesLR = zeros(size(imagesLR));
for a = O:(factorDW - 1)
for b = O:(factorDW - 1)

psi,xval,scale,k2);

psi,xval,scale,k2);

* factorDW)';

col = 1;
row = 1;
for ¢ = (1 + a):factorDW:heigthLR * factorDW
for d = (1 + b):factorDW:widthLR * factorDW
approlmagesLR(row,col, ((a * factorDW) + b) + 1) =
col = col + 1,
end
row = row + 1;
col = 1;

end
end
end
%%% Compute the erros for every images
errorimages = imagesLR - approlmagesLR,;

mage to

coarseApproximation(c,d);
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for i = l:nblmages
Q00U -mmmmmmmmmmmmmm e eeeees e
%%% Compute horizontal, vertical scaling function and also horizontal,
%%% vertical wavelet function
%%% Horizontal scaling function
= zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
= zeros(size(imagesLR(:,:,1),2), length(kVertical ));
= zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
= zeros(size(imagesLR(:,:,1),2), length(kVertical ));
for j = 1l:size(Hjhs,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(corrindexLR(j,1,indexImagesLR(i),1)==xvals );
if (—isempty(ind))
Hjhs(j,count) = psis(ind);
end
count = count + 1;
end
end
%%% Vertical wavelet function
for j = 1l:size(Gjvs,1)
count = 1;
for k2 = kVertical(1):kVertical(length(kVertical))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(corrindexLR(1,j,indexImagesLR(i),2)==xvals );
if (—isempty(ind))
Gjvs(j,count) = phis(ind);
end
count = count + 1;
end
end
%%%%%%% %% % % %% %% %% %% % %% %% %% % % %% % %% %Y
%%% Detect horizontal details
if (==
leftsum = kron((Hjhs' * Hjhs),(Gjvs' *Gjvs)) + lambda. *eye(size(kron((Hjhs' * Hjhs),(Gjvs'
tmp = errorimages(:,:,indexImagesLR(i))";
rightsum = kron(Hjhs',Gjvs") *tmp(:);
else
leftsum = leftsum + kron((Hjhs' * Hjhs),(Gjvs' *Gjvs)) + ...
lambda. *eye(size(kron((Hjhs' * Hjhs),(Gjvs' * Gjvs))));
tmp = errorimages(:,:,indexImagesLR(i))";
rightsum = rightsum + kron(Hjhs',Gjvs') *tmp(:);
end
end

%%% Computation of the approximation coefficient
detailsVCoeff = (leftsum\rightsum);

%%%%%%%%%%%%%% %% %% %% %% %% %% %% %% %% %%

%%%

%%% Compute the vertical image

WNYO —---mmmmmmmmmmmmmme e eeeeemeeee e
%%% Compute the matrix contaning the shift of the scaling fun ction at
%%% the different points wanted

%%% Vertical scaling function

for

end

j = 1:size(Hjh,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(j==xvals);
if (—isempty(ind))
Hjh(j,count) = psis(ind);
end
count = count + 1;
end

%%% Horizontal wavelet function

*Gjvs))));
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for j = 1l:size(Gjv,1)
count = 1;
for k2 = kVertical(1):kVertical(length(kVertical))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(j==xvals);
if (—isempty(ind))
Gjv(j,count) = phis(ind);
end
count = count + 1;
end
end

%%% Compute the new image with horizontal details
fl = f0 + (kron(Hjh,Gjv) * detailsVCoeff);
verticalApproximation = reshape(fl,widthLR *factorDW,heigthLR = factorDW)';

%%% Plot the result of the approximation
subplot(235);
imshow(verticalApproximation);

title(  'Vertical approximation' );
imwrite(vertical Approximation, ‘vertical.bmp' , 'bmp’ );

fo = f1,
coarseApproximation = verticalApproximation;

clear leftsum;
clear rightsum;

%%% Create some low resolution images of the approximation i mage to
%%% compute the low resolution errors image
%%% Preallocation
approlmagesLR = zeros(size(imagesLR));
for a = O:(factorDW - 1)
for b = 0:(factorDW - 1)
1:

col = 1;
row = 1;
for ¢ = (1 + a):factorDW:heigthLR * factorDW
for d = (1 + b):factorDW:widthLR * factorDW
approlmagesLR(row,col, ((a + factorDW) + b) + 1) = coarseApproximation(c,d);
col = col + 1,
end
row = row + 1;
col = 1;
end

end
end
%%% Compute the erros for every images
errorimages = imagesLR - approlmagesLR;

for i = l:nblmages
QYYD —m-mmmmmmmmmmm s e

%%% Compute horizontal, vertical scaling function and also horizontal,
%%% vertical wavelet function

= zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
= zeros(size(imagesLR(:,:,1),2), length(kVertical ));
= zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
= zeros(size(imagesLR(:,:,1),2), length(kVertical ));

%%% Vertical scaling function

for j = 1l:size(Hjvs,1)

count = 1;

for k2 = kVertical(1):kVertical(length(kVertical))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(corrindexLR(1,j,indexImagesLR(i),2)==xvals );

if (—isempty(ind))
Hjvs(j,count) = psis(ind);
end
count = count + 1;
end
end

%%% Horizontal wavelet function



end

for j = 1l:size(Hjhs,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi,
ind = find(corrindexLR(j,1,indexImagesLR(i),1)==xvals
if (—isempty(ind))
Hjhs(j,count) = psis(ind);
end
count = count + 1;
end
end

%%%%%% %% %% % %% %% %% %% %% %% %% % % %% %% %% %Y
%%% Detect horizontal details

psi,xval,scale,k2);

if (==
leftsum = kron((Hjhs' * Hjhs),(Hjvs' *Hjvs)) + lambda. *eye(size(kron((Hjhs
tmp = errorimages(:,:,indeximagesLR(i))";
rightsum = kron(Hjhs',Hjvs') *tmp(:);
else
leftsum = leftsum + kron((Hjhs' * Hjhs),(Hjvs' *Hjvs)) + ..
lambda. *eye(size(kron((Hjhs' * Hjhs),(Hjvs' * Hjvs))));

tmp = errorimages(:,:,indexImagesLR(i))";
rightsum = rightsum + kron(Hjhs',Hjvs") *tmp(:);
end
end

%%% Computation of the approximation coefficient
detailsDCoeff = (leftsum\rightsum);

%%%%% % %% %% % %% %% % %% %% % %% %% % %% %% % %% %Y
%%% Compute the diagonal image

R

%%% Compute the matrix contaning the shift of the scaling fun
%%% the different points wanted
%%% Vertical scaling function

for j = l:size(Hjv,1)
count = 1;
for k2 = kVertical(1):kVertical(length(kVertical))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi,
ind = find(j==xvals);
if (—isempty(ind))
Hjv(j,count) = psis(ind);
end
count = count + 1;
end
end

%%% Horizontal wavelet function

for j = l:size(Hjh,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))
[phis,psis,xvals] = computeScaleTranslateWavelet(phi,
ind = find(j==xvals);
if (—isempty(ind))
Hjh(j,count) = psis(ind);
end
count = count + 1;
end
end

%%% Compute the new image with horizontal details
fl = f0 + (kron(Hjh,Hjv) * detailsDCoeff);

diagonalApproximation = reshape(fl,widthLR * factorDW, heigthLR
%%% Plot the result of the approximation

subplot(236);

imshow(diagonal Approximation);

title(  'Diagonal approximation' );

imwrite(diagonalApproximation, ‘diagonal.bmp' , 'bmp" );

fo = f1,

coarseApproximation = diagonalApproximation;

ction at

psi,xval,scale,k2);

psi,xval,scale,k2);

* factorDW)';

* Hjhs),(Hjvs'

8%0%%%

*Hjvs))));
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