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Abstract—Principle of super resolution is to obtain high
resolution images from one or several low resolution images. First
methods allows to recover high resolution images using several
low resolution images. However, a challange was to reconstruct
these high resolution images from only one low resolution image.
In order to recover the missing data, the idea is to interpolate
vanished data. In this paper, different methods are presented
based on wavelet interpolation. An histotical overview will be
given so that the reader catch the scientific evolution way taken
by the researchers to face the super resolution issues.

I. I NTRODUCTION

Super resolution refers to techniques which allow to enhance
the resolution of images. Before to go further, super resolution
methods presented in this literature review will be only based
on wavelet theory [2], [8], [10] and more precisely on wavelet
interpolation.

In order to solve the super resolution issues which is an
inverse problem, a foward model have to be constructed. In
the different papers which will be described, the foward model
used is the following:

fk = DCEkx + nf (1)

whereD is the downsampling operator,C is the blurring
operator,Ek is the affine transforms to acquire each low
resolution image andnf is an additive noise.x is the high
resolution unknown image whilefk are the different low
resolution images. Figure 1 presents the different steps of
the forward model to go from high resolution image to low
resolution images.

C. Ford and D. M. Etter proposed a method to interpolate
missing values for one dimensional signal [1]. Inspired by this
work, N. Nguyen and P. Milanfar proposed an extension for
interlaced one dimensial signal and two dimensional images
[3], [5], [4]. These methods can be considered as conventional

Figure 1. Forward transformation to go from high resolutionimage to low
resolution images

methods since the super resolution image is computed giving
multiple low resolution images. Each low resolution image
imposes a set of linear constraints on the unknown high
resolution image. If the number of low resolution images is
enough (where each image gives different information due to
the subpixel shifts), the set of equations will be larger than
the number of unknowns and the system is determined.

Instead of obtain super resolution image from several low
resolution images, a challenge was to generate super resolution
image from only with one low resolution image. Previous
methods [1], [3], [5], [4] will lead to an under determined
system because the number of unknowns will be larger than the
number of linear constraints given by the low resolution image.
In order to get round these difficulties of under determined
system affected by the restricted number of low resolution
image, D. Glasner et al. proposed a trick based on the property
of patch redundancy inside a single image [13].

Recently, due of several important results by D. Donoho,
E. Candes, J. Romberg and T. Tao [15], [16], [17], [18],
[19] in the field of compressed sensing, under determined
linear system could be solved and give sparse solution. The
wavelet domain being almost sparse, these results could be
used to infer super resolution issues. J. Yang and al. proposed
a method using the sparse representation of the wavelet domain
in order to generate a super resolution image from only one
low resolution image [6], [7].

In this paper, previous presented works will be discussed in
details. Super resolution from multiple low resolution images
will be presented in the first section. The advance using onlya
single frame will be introduced in the second section while a
presentation of super resolution using compressed sensingand
sparse representation properties will be given in the thirdpart.
The last section will be dedicated to the different applications
of super resolution.

II. SUPER RESOLUTION FROM MULTIPLE LOW

RESOLUTION IMAGES

This part is organized as follow: the first section will be
dedicated to the one dimensional case and the second section
will describe the extension of the two dimensional case.

A. One dimensional case

The method presented in this section was proposed by
N. Nguyen and P. Milanfar [3]. This work is based on the
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Figure 2. Example of interlaced data. Points in red can be considered as
a frame as well as points in green and in yellow. The signal in blue is the
original signal.

multiresolutional basis fitting reconstruction (MBFR) method
from C. Ford and D. M. Etter [1]. The hypothesis assumed
by N. Nguyen and P. Milanfar was to consider the data
organized as interlaced sampling structure which will simplify
the complexity of the algorithm. For a one dimensional case,
interlaced sampling can be represented as in figure 2.

Data are not only sampling randomly but can be represented
as a set of ”frames”. The transformation from one frame
to another is a simple translation. Hence, each frame gives
information (imposes linear constraints). The principle of
super resolution will be to find the missing data so that after
reconstruction, the original signal will be recovered.

In order to retrieve the ”high resolution” signal, wavelet
coefficients have to be computed. Projecting the function onto
a sufficient number of subspaces will lead to have a sufficient
number of wavelet coefficients in order to reconstruct the
original signal at every points wanted in the finest scale.
Approximation coefficients will lead to obtain a coarse-scale
approximation of the original signal while detail coefficients
will allow to find out the details missing after the calculation
of the coarse-scale approximation.

The approximations coefficients extract from multiple low
resolution ”frames” are approximately equal to the approx-
imation coefficients of the high resolution signal. Finding
these approximation coefficients, the details coefficientscan
be retrieve.

1) Overview of multiresolution analysis and discrete
wavelet transform:Before to enter into details in the MBFR
method, an overview of the multiresolution analysis and
discrete wavelet transform will be given. A multiresolution
analysis inL2(R) is defined by [8]:

... ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ ... ⊂ Vj+1 ⊂ Vj ⊂ ...

Figure 3. Scheme of multiresolution analysis in discrete wavelet transform

⋃

j∈Z

Vj = L2(R) (2)

⋂

j∈ZVj

= {0} (3)

∀j ∈ Z if f(x) ∈ Vj ⇔ f(2−1x) ∈ Vj+1 (4)

∀k ∈ Z if f(x) ∈ V0 ⇔ f(x− k) ∈ V0 (5)

Moreover,Wj can be defined as the orthogonal complement
of Vj as:

Vj−1 = Vj ⊕Wj (6)

L2(R) =
⊕

j∈Z

Wj (7)

The multiresolution analysis can be considered as shown in
figure 3. The spaceVj is the approximation space spanned by
the scaling functionϕj,n(x) = 2−

j

2ϕ(2−jx − n) while the
spaceWj is the detail space spanned by the scaling function
ψj,n(x) = 2−

j

2ψ(2−jx− n) [1].

Considering this multiresolution analysis, if a functionf(x)
resides in the spaceV0, this function can be decomposed as
follow:

f(x) =
∑

n

aJ,nϕJ,n(x) +

J
∑

j=1

∑

n

dj,nψj,n(x) (8)

2) Computation of the coarse-scale approximation of the
signal: As remind in the section II-A1, a function can be
decomposed as shown in equation (8) for allx. In the case
where data are missing, only few samplesxk ∈ {0, 1, 2, ..., p}
are available. Hence the equation (8) can be written as:
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f(x0) =
∑

n

aJ,nϕJ,n(x0) +

J
∑

j=1

∑

n

dj,nψj,n(x0)

f(x1) =
∑

n

aJ,nϕJ,n(x1) +

J
∑

j=1

∑

n

dj,nψj,n(x1)

f(x2) =
∑

n

aJ,nϕJ,n(x2) +

J
∑

j=1

∑

n

dj,nψj,n(x2) (9)

f(xp) =
∑

n

aJ,nϕJ,n(xp) +
J
∑

j=1

∑

n

dj,nψj,n(xp)

This last decomposition was the base of the work describe in
[1]. However, N. Nguyen and P. Milanfar included the concept
of interlaced data [3] presented on figure 2. Hence, the data
available arexk ∈ {0, 1, 2, ..., p} but n times wheren will be
the number of ”frames”. So equation (10) can be written:

f i(x0) =
∑

n

aJ,nϕ
i
J,n(x0) +

J
∑

j=1

∑

n

dj,nψ
i
j,n(x0)

f i(x1) =
∑

n

aJ,nϕ
i
J,n(x1) +

J
∑

j=1

∑

n

dj,nψ
i
j,n(x1)

f i(x2) =
∑

n

aJ,nϕ
i
J,n(x2) +

J
∑

j=1

∑

n

dj,nψ
i
j,n(x2)(10)

f i(xp) =
∑

n

aJ,nϕ
i
J,n(xp) +

J
∑

j=1

∑

n

dj,nψ
i
j,n(xp)

wherei is the low resolution ”frame” considered.

In vector notation, the system is given by:

fis = Φ
s(i)
J aJ +

J
∑

j=1

Ψs
j(i)dj (11)

whereΦs
J is the matrix of shifts of the scaling function

samples at the levelJ associated with the sample indexxk
of the ith framef i

s. Ψ
s
j is the matrix of shifts of the wavelet

function samples at the levelj associated with the sample
indexxk of the ith framef i

s.

Due of the missing data, the detail coefficientsdj cannot
be computed. However, the approximation coefficients can be
approximate discarding the detail part. So the system (11) can
be written as follow:

fis ≈ Φs
JaJ (12)

In order to solve this problem in regularized least square
sense in the wavelet domain, the number of linear constraints
has to be larger than the number of unknowns. So the number
of ”frames” have to be large enough and as discuss by C. Ford
and D. M. Etter,J is chosen to be the minimum (or finest)

(a) Case when the value ofλ is
too small. The solution will be

under-regularized and will
oscillate.

(b) Case when the value ofλ is
too large. The solution found will

not ”trust” enough the samples
given and will be too flat.

Figure 4. Properties of the parameterλ

resolution for which the system is determined [1]. Thus, an
approximation of the approximation coefficients is given by:

âJ = (ΦsT
J Φs

J + λI)−1ΦsT
J fi (13)

Taking advantage of the interlaced data properties con-
tributed by [3], the equation (13) can be written as:

âJ =

(

n
∑

i=1

Φ
s(i)T
J Φ

s(i)
J + λI

)−1 n
∑

i=1

Φ
s(i)T
J fi (14)

where I is the identity matrix with the same size as
Φ

s(i)T
J Φ

s(i)
J . The parameterλ is the parameter of regulariza-

tion. Largerλ is, more regular (flat) will be the solution. The
properties of the parameterλ is shown on figure 4. When
the value ofλ is too small (figure 4(a)), the solution will be
under-regularized and will oscillate. When the value ofλ is too
large (figure 4(b)), the solution found will not ”trust” enough
the samples given and will be too flat.

Once the approximation coefficientŝaJ are computed, a
coarse-scale approximation of the original signal can be com-
puted:

f̂0 = ΦJ âJ (15)

whereΦJ is the matrix of shifts of the scaling function
at level J for all x of the high resolution grid. Results of
approximation is presented on figure 5.

After have computed the coarse-scale approximation signal,
it will be possible to compute the detail coefficients from the
coarsest to the finest scale. This calculation is explained in the
next section.

3) Computation of the detail part of the signal:The fol-
lowing equation can be deduced from the equation (11):

J
∑

j=1

Ψs
jdj = fis − Φs

JaJ (16)

ReplacingaJ by the approximation computed beforeâJ and
taking profit of the interlaced data sampling, the equation (16)
can be written as follow:
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Figure 5. The original signal is represented in red. The coarse-scale
approximation found using regularized least square is shown in blue. Black
and green dots are the data used to infer the approximation signal. Points
having the same color belongs to the same ”frame”.

J
∑

j=1

Ψs
jdj = fis − Φ

s(i)
J âJ (17)

Hence,

Ψs
JdJ ≈ fis − Φ

s(i)
J âJ (18)

ei0 ≈ fis − Φ
s(i)
J âJ (19)

In the same way as in the previous section II-A2, a solution
can be inferred in regularized least square sense and will lead
to formalize as follow:

d̂J =

(

n
∑

i=1

Ψ
s(i)T
J Ψ

s(i)
J + λI

)−1 n
∑

i=1

Ψ
s(i)T
J ei0 (20)

whereΨs(i)
J is the matrix of shifts of the wavelet function

samples at the levelJ associated with the sample indexxk of
the ith error frameeis.

Once the detail coefficients are found, an approximation
signal can be update as follow:

f̂1 = f̂0 +ΨJ d̂J (21)

Results of the approximation signal are shown on figure
6(a).

Replacinĝf0 by f̂1 and repeating the same manipulation at
the next finer scale (J − 1), it will be possible to add one
level of detail more and so on until achieving the finest scale
possible. Results of the approximation signal are shown on
figure 6(b) while final results are presented on figure 6(c).

A Matlab implementation is given in appendix A.

(a) Blue signal is the coarse-scale
approximation signal while green
signal is the approximation where

one level of detail is added

(b) Blue signal is the
approximation where one level of

detail is added while the green
signal is the approximation with

another level of detail

(c) Green signal is the final
reconstruction given by the

algorithm while the red signal is
the original signal

Figure 6. Results for different level of details and comparison with the
original signal

(a) Interlaced data in the two
dimensions case

(b) Example of interlaced data
after registration of low resolution

images where black pixels will
have to be interpolated

Figure 7. Interlaced data in the two dimensions case

B. Two dimensional case

N. Nguyen and P. Milanfar extend the one dimensional case
presented in the previous section (II-A) to the two dimensional
case for images [3], [5], [4].

They assumed in the same way that the data given by low
resolution images are interlaced sampling as shown in figure
7.

Each low resolution image has to be translated to give
enough new information about the scene to create the high
resolution image. As previously, the method is based on
multiresolutional analysis and discrete wavelet transform. So
first, a complement of discrete wavelet analysis for the two
dimensional case will be given. Then, the interpolation for
interlaced two dimensional images will be introduced.
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(a) Original image (b) Example of low resolution
image

(c) Coarse approximation image (d) Coarse approximation image
with addition of horizontal details

(e) Coarse approximation image
with addition of horizontal details

and vertical details

(f) Coarse approximation image
with addition of horizontal details,
vertical details and diagonal details

Figure 8. Results obtained with the algorithm described

C. Multiresolution analysis and discrete wavelet transform for
two dimensional images

The multiresolution analysis and wavelet transform for
two dimensional images are just an extension of the one
dimensional case. In this section, only modifications compare
to the one dimensional case will be presented.

As presented in [8], [10], [12], the decomposition of an
image in the wavelet domain is about the same. The main
changes lie in the two dimensions of the wavelet family
(scaling and wavelet function). Now, the translation is notonly
in one dimension but in the two direction (x andy).

Hence, the main change is in the equation (8) which will
be now:

f(t, s) =
∑

k,l

aJ,k,lϕJ,k,l(t, s)+

J
∑

j=1

∑

k,l

dj,k,lψj,k,l(t, s) (22)

In the case of wavelet families which are separable, Mallat
deduces that the two dimensional spaceV

(2)
j is equivalent to

the tensor product of the one dimensional spaceVj [2], [10],
[12]:

V
(2)
j = Vj ⊗ Vj (23)

And the two dimensional scaling function can be decom-
posed into two one dimensional scaling functions(horizontal
and vertical):

ϕj,k,l(t, s) = ϕj,k(t)ϕj,l(s) (24)

The two dimensional wavelet function will be decomposed
into three dimensional wavelet function (horizontal, vertical
and diagonal):

ψh
j,k,l(t, s) = ϕ(s)j,kψ(t)j,l

ψv
j,k,l(t, s) = ψ(s)j,kϕ(t)j,l (25)

ψd
j,k,l(t, s) = ψ(s)j,kψ(t)j,l

Thus the equation 22 can be written as:

f(t, s) =
∑

k,l

aJ,k,lϕj,k(t)ϕj,l(s)

+

J
∑

j=1

∑

k,l

dhj,k,lϕ(s)j,kψ(t)j,l

+

J
∑

j=1

∑

k,l

dvj,k,lψ(s)j,kϕ(t)j,l (26)

+

J
∑

j=1

∑

k,l

ddj,k,lψ(s)j,kψ(t)j,l

Hence, re-writing the equation (11) for the two dimensional
case:

fis = (Φ
s(i)
Jt ⊗ Φ

s(i)
J )aJ

+

J
∑

j=1

(Φs(i)(s)jt ⊗Ψs(i)(t)js)dh
j

+
J
∑

j=1

(Ψs(i)(s)jt ⊗ Φs(i)(t)js)dv
j (27)

+

J
∑

j=1

(Ψs(i)(s)jt ⊗Ψs(i)(t)js)d
d
j

whereΦ are the matrices of shifts of the different scaling
functions samples associated with theith framef i

s. Ψ are the
matrices of shifts of the different wavelets functions samples
associated with theith framef i

s. The symbol⊗ represents the
Kronecker or tensor product. This product is used in order to
have a matrix with all possibilities of translation after merging
two matrices (scaling or wavelet functions).
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1) Computation of the coarse-scale approximation of the
image: As shown in the one dimensional case (section II-A2),
a coarse-scale approximation image can be computed in the
same way and the equation (12) can be written as:

fis ≈ (Φ
s(i)
Jt ⊗ Φ

s(i)
J )aJ (28)

The approximation coefficientsaJ can find in a regularized
least square sense and as shown in equation (14):

âJ =

(

n
∑

i=1

(Φ
s(i)T
Jt Φ

s(i)
Jt )⊗ (Φ

s(i)T
Js Φ

s(i)
Js ) + λI

)−1

×

n
∑

i=1

(

Φ
s(i)T
Jt ⊗ Φ

s(i)T
Js

)

fi (29)

Once the approximation are computed, an coarse-scale ap-
proximation image can be computed as in the one dimensional
case (equation (15)):

f̂0 =
(

Φ
(i)T
Jt ⊗ Φ

(i)T
Js

)

âJ (30)

Figure 8(c) shows the result of a coarse approximation
image.

When the approximation coefficients have been computed,
the detail coefficients can be computed too.

2) Computation of the detail part of the image:As in
the one dimensional case, detail coefficients are computed
using the residuals (error between the approximation and the
different low resolution images). The difference in the two
dimensional case compared to the one dimensional is that three
different kind of details will be computed at each scale level:
horizontal, vertical and diagonal. Thus, first horizontal detail
coefficients will be computed as:

(Φs(i)(s)jt ⊗ Ψs(i)(t)js)dh
J ≈ fis −

(

Φ
s(i)T
Jt ⊗ Φ

s(i)T
Js

)

âJ

eih ≈ fis −
(

Φ
s(i)T
Jt ⊗ Φ

s(i)T
Js

)

âJ (31)

In the same way as in the section II-A3, the horizontal detail
coefficients will be computed using regularized least square
methods:

d̂
h

J =

(

n
∑

i=1

(Φ
s(i)T
Jt Φ

s(i)
Jt )⊗ (Ψ

s(i)T
Js Ψ

s(i)
Js ) + λI

)−1

×

n
∑

i=1

(

Φ
s(i)T
Jt ⊗Ψ

s(i)T
Js

)

eih (32)

Then, details will be added to the coarse approximation to
give a new approximation which will be finer:

f̂1 = f̂0 + (Φ(i)(s)jt ⊗Ψ(i)(t)js)d̂
h

J (33)

Figure 8(d) shows a coarse approximation image where the
horizontal details were added.

Replacing f̂0 by f̂1 and recomputing the residuals, the
vertical and diagonal details will be obtain:

(Ψs(i)(s)jt ⊗ Φs(i)(t)js)d
v
J ≈ fis − f̂

s(i)

0

eiv ≈ fis − f̂
s(i)

0 (34)

d̂
v

J =

(

n
∑

i=1

(Ψ
s(i)T
Jt Ψ

s(i)
Jt )⊗ (Φ

s(i)T
Js Φ

s(i)
Js ) + λI

)−1

×

n
∑

i=1

(

Ψ
s(i)T
Jt ⊗ Φ

s(i)T
Js

)

eiv (35)

Replacinĝf0 by f̂1:

(Ψs(i)(s)jt ⊗ Ψs(i)(t)js)d
d
J ≈ fis − f̂

s(i)

0

eid ≈ fis − f̂
s(i)

0 (36)

d̂
d

J =

(

n
∑

i=1

(Ψ
s(i)T
Jt Ψ

s(i)
Jt )⊗ (Ψ

s(i)T
Js Ψ

s(i)
Js ) + λI

)−1

×

n
∑

i=1

(

Ψ
s(i)T
Jt ⊗Ψ

s(i)T
Js

)

eid (37)

Results with vertical and diagonal details added are shown
respectively on figure 8(e) and figure 8(f).

A Matlab implementation is given in appendix B.

III. SUPER RESOLUTION FROM A SINGLE LOW

RESOLUTION IMAGE

In the previous section II, in order to obtain an overde-
termined system, several low resolution images where needed
and each low resolution image give linear constraints as shown
in figure 9(a). D. Glasner et al. proposed a method where only
a single low resolution image will allow to generate a super
resolution image [13].

A. Patch redundancy inside a single frame at different scales

Glasner et al. find out that considering a patch in the original
image, similar patch can be found inside the same image
(figure 9(b)). Pushing the concept further, it will be possible
to find similar patches at different scales (lower scale). This
redundancy is shown in figure 9.

Glasner et al. analysed on a wide images database the per-
centage of recurrent patches through different scales. Results
are shown in figure 10. Figure 10(a) shows that the percentage
of recurrent patches at different scales is very important even
at a low scale. In order to see if details so high frequency
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(a) Super resolution using multiple
low resolution images. At the same

location for each low resolution
image, the pixel considered will
give information to generate the

high resolution image

(b) Super resolution using
recurrent patches properties. Due

of the redundancy of patches
inside the same image, different

locations inside the image can give
linear constraints in order to

generate the high resolution image

(c) Patch redundancy at the
original scale. Red patch is the

model patch while blue patches are
the nearest neighbour of the model

patch

(d) Patch redundancy at the scale
1.25−1. Red patch is the model
patch while blue patches are the
nearest neighbour of the model

patch

(e) Patch redundancy at the scale
1.25

−2. Red patch is the model
patch while blue patches are the
nearest neighbour of the model

patch

(f) Patch redundancy at the scale
1.25

−3. Red patch is the model
patch while blue patches are the
nearest neighbour of the model

patch

(g) Patch redundancy at the scale
1.25−4. Red patch is the model
patch while blue patches are the
nearest neighbour of the model

patch

(h) Patch redundancy at the scale
1.25−6. Red patch is the model
patch while blue patches are the
nearest neighbour of the model

patch

Figure 9. Patch redundancy at different scales

(a) Percentage of recurrent patches
at different scale for all images

(b) Percentage of recurrent
patches at different scale for
only high texture location in

the images

Figure 10. Patch redundancy at different scales

Figure 11. Combining method proposed by Glasner et al. [13]

could be recover from these redundancies, they analysed the
redundancy patches on the high texture location of the image
at different scales. The results are shown on the figure 10(b).
The percentage of recurrent patches at low scale only regarding
high texture is still large. They concluded that the redundancy
of patches will add linear constraints using the same image at
different scales.

B. Scheme of super resolution using patch redundancy

The method proposed by Glasner et al. is illustrated in figure
11. Patches are defined in the low resolution image (dark red
and dark green patches). For a scale smaller than the low
resolution image, similar patches of the initial patches are
found (light red and light green patches). These last patches
will bring more linear constraints in order to solve a classical
super resolution problem. The information of these patches
will be weighted by the similarity with orginal patches. These
low scale patches will be copied in order to estimate the super
resolution image. An example of result of this method is shown
on figure 12.

IV. SUPER RESOLUTION USING COMPRESSED SAMPLING

AND SPARSE REPRESENTATION

The method proposed by Glasner et al. [13] gives good
results. However, the purpose of this method was not to break
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(a) Low resolution
image

(b) Super resolution generated by the algorithm

Figure 12. Results of the method proposed by Glasner et al. [13]

the issue of under determined system which cannot be solved.

Recently, due of several important results by D. Donoho,
E. Candes, J. Romberg and T. Tao [15], [16], [17], [18], [19]
in the field of compressed sensing, under determined linear
system could be solved and give sparse solution. This approach
gives a new impetus to the field of super resolution.

Due of the non-sparsity of the spatial domain of the im-
age, compressed sensing cannot be apply directly. However,
generally images in the wavelet domain are mostly sparse.
Hence, compressed sensing andl1 normalization can be used
to recover high resolution image from a single low resolution
image.

The method which will be presented was introduced by
J. Yang [6]. In this section, only the part corresponding to
the resolution of the super resolution issues will be presented.
Hence, the preparation of dictionaries will not be explained.
For more information regarding the dictionaries creation,the
reader can consult the article [6], [7].

Compressive sensing can give sparse solution using the
wavelet domain. Considering a high resolution imageX , X
can be decomposed of several patchesx. Hence, the high
resolution image can be decomposed in the wavelet domain
as:

x = Dhα (38)

whereα represents the wavelet coefficients andDh rep-
resents the dictionary used to decompose the high resolution
image. The idea of the algorithm proposed is to approximate
α knowing that the vector should be sparse.

In fact, only low resolution image is available. Hence, the
goal will be to infer each high resolution patch from each low
resolution image using the wavelet coefficients. Hence,α have
to be approximated such thatα is the sparsest as possible and
the difference between the estimation and the real data is as
small as possible. This problem can be formalized as:

min ‖α‖l1 s.t. ‖FDlα− Fy‖
2
2 ≤ ǫ (39)

whereα are the wavelet coefficients,Dl is the dictionary
for low resolution decomposition,y is the patch in the low

(a) Original image (b) Low
resolution

image

(c) High resolution image
reconstruct using the

algorithm

Figure 13. Results of the method proposed by J. Yang et al. [6], [7]

resolution image andF is a linear feature extractor operator.

Another constraint is that all different patches found in the
high resolution image have to be as consistent as possible each
other. Hence, the overlap between each patch will be taken
in consideration as each new patch will be compatible with
the previous patch computed. This constraint is added to the
equation (39) and can be written:

min ‖α‖l1 s.t. ‖FDlα− Fy‖
2
2 ≤ ǫ1

‖PDhα− w‖
2
2 ≤ ǫ2 (40)

whereα are the wavelet coefficients,Dl is the dictionary
for low resolution decomposition,y is the patch in the low
resolution image andF is a linear feature extractor operator.
The matrix P extracts the region of overlap between the
current patch and the precious computed patch andw is the
matrix containing the values of the previous patch computed.

As in the section II, a regularized linear estimator will be
used using a parameterλ which will have the same kind of
effect on the solution. This parameter will balance between
the sparsity level of the solution and the fidelity of the
approximation toy. Hence, the system which will be solved
is the following:

minλ ‖α‖l1 +
1

2

∥

∥D̄α− ȳ
∥

∥

2

2
(41)

whereD̄ =

[

FDl

βPDh

]

and ȳ =

[

Fy

βw

]

. β will balance

between matching the low resolution input and finding high
resolution patch which is compatible with its neighbor.

To reconstruct the high resolution patch, the estimationα̂

found can be injected inside the equation (38). Results of this
algorithm are presented on figure 13.

V. A PPLICATION

Thus, the advantage of super resolution algorithm is that
using only one or several low resolution images, a high
resolution image of the scene can be computed.

Hence, it is very obvious that super resolution algorithm
can be used to speed up and enhance the quality of images
for all type of real-time applications. Moreover, the cost of
the sensors produced to acquire low resolution images is less
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(a) Low resolution image (b) High resolution image
computed

Figure 14. Results of the super resolution in astronomy given by R. Willet
et al.[14]

expensive than high resolution sensors. The architecture of
sensors will be less complex. Miniaturization of elements
inside sensors will be less important leading to a financial
gain.

Nowadays, super resolution was used also in astronomy.
Images acquired in astronomy are usually low resolution and
blurred due of physics limitations. Results of super resolution
image are presented on figure 14

VI. CONCLUSION

In this paper, an historical overview of super resolution
was given. First, a classical super resolution algorithm was
presented. In this case, multiple low resolution images were
needed in order to generate a high resolution image. We
focus more in details on this method than the other methods
presented after that. Then, methods using only one low reso-
lution image was presented. The first method was a method
which use a patches based super resolution at different scale
in order to find more linear equations so that to have an
over determined system. The second solution is based on the
discoveries in the field of compressed sensing which allow to
find a sparse solution to under determined system which is
the case of super resolution in the wavelet domain. Finally,
we presented a short section regarding the applications of the
super resolution.

REFERENCES

[1] C. Ford and D. M. Etter, “Wavelet basis reconstruction ofnonuniformly
sampled data,”IEEE Transactions on Circuits and Systems, vol. 45, pp.
1165–1168, 1998.

[2] S. G. Mallat, “A theory for multiresolution signal decomposition: the
wavelet representation,”IEEE Transactions on Pattern Analysis and
Machine Intelligence - II: Analog and Digital Signal Processing, vol. 11,
pp. 674–693, 1989.

[3] N. Nguyen and P. Milanfar, “A wavelet-based interpolation-restoration.
method for superresolution (wavelet superresolution),”IEEE Transac-
tions on Circuits and Systems, vol. 19, pp. 321–338, 2000.

[4] N. Nguyen, P. Milanfar, and G. H. Golub, “A computationally efficient
superresolution image reconstruction algorithm,”IEEE Transactions on
Image Processing, vol. 10, no. 4, pp. 573–583, 2001.

[5] N. Nguyen and P. Milanfar, “An efficient wavelet-based algorithm for
image superresolution,” inICIP, 2000.

[6] J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution
as sparse representation of raw image patches,”Computer Vision and
Pattern Recognition, IEEE Computer Society Conference on, vol. 0, pp.
1–8, 2008.

[7] ——, “Image super-resolution via sparse representation,” IEEE Trans-
actions on Image Processing, vol. 19, pp. 2861 – 2873, 2010.

[8] F. Truchetet,Ondelettes pour le signal numerique, Hermes, Ed. Hermes,
1998.

[9] ——, Traitement lineaire du signal numerique, Hermes, Ed. Hermes,
1998.

[10] S. Mallat, Une exploration des signaux en ondelettes, E. de l’ecole
polytechnique, Ed. Ellipses Diffusion, 2000.

[11] C. McGregor, J. Nimmo, and W. Stothers,Fundamentals of university
mathematics, Horwood, Ed. Horwood, 2007.

[12] S. Mallat,A wavelet tour of signal processing, A. Press, Ed. Academic
Press, 2008.

[13] D. Glasner, S. Bagon, and M. Irani, “Super-resolution
from a single image,” in ICCV, 2009. [Online]. Available:
http://www.wisdom.weizmann.ac.il/ vision/SingleImageSR.html

[14] R. Willet, I. Jermyn, R. Nowak, and J. Zerubia, “Wavelet-based super-
resolution in astronomy,” 2004.

[15] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Transactions on Information Theory, vol. 52, pp. 489 – 509, 2006.

[16] ——, “Stable signal recovery from incomplete and inacurate measure-
ments,”Communications on Pure and Applied Mathematics, vol. 59, pp.
1207 – 1223, 2006.

[17] E. Candes and T. Tao, “Near-optimal isignal recovery from random
projections and universal encoding strategies?”IEEE Transactions on
Information Theory, vol. 52, pp. 5406 – 5245, 2006.

[18] E. Candes and J. Romberg, “Sparsity and incoherence in compressive
sampling,” Inverse Problem, vol. 23, pp. 969 – 986, 2007.

[19] E. Candes and T. Tao, “The dantzig selector: Statistical estimation when
p is much smaller than n,”Annal of Statistics, vol. 35, pp. 2392 – 2404,
2007.

[20] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun,
K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive
sampling,”IEEE Signal Processing Magazine, vol. 1, pp. 83 – 91, 2008.



10

APPENDIX A
IMPLEMENTATION OF ONE DIMENSIONAL CASE SUPER RESOLUTION

A. Main file

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Guillaume Lemaitre
%%% -------------------------
%%% This function is an implementation of the 1D super resolu tion presented
%%% by:
%%% C. Ford and D. M. Etter, Wavelet Basis Reconstruction of N onuniformly
%%% Sampled Data, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMSII: ANALOG AND
%%% DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 8, AUGUST 1998
%%% and
%%% Nhat Nguyen and Peyman Milanfar, A Wavelet-Baset
%%% interpolation-restoration method for super resolutio n (Wavelet Super
%%% Resolution), Circuits System Signal Process, VOL. 19, N O. 4, 2000, pg
%%% 321-338
%%% -------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;
close all;
clc;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Paramters
%%% Total numbers of points
nbPoints = 200;
t0 = 0;
tmax = 10;
%%% Factor of downsampling
factorDW = 4;
%%% Number of images which have to be considered
nbImages = 3;
%%% Color vector
colorVector = [ '+r' ; '+g' ; '+y' ; '+c' ; '+m' ; '+k' ];
%%% Wavelet family
filter = 'db6' ;
lengthSupport = 11;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Generation of a synthetic signal
%%% Original Signal:
xOriginal = 1:nbPoints;
%fOriginal = cos((2 * pi * xOriginal). * ((tmax-t0)/nbPoints)). * (sqrt(xOriginal). * ((tmax-t0)/nbPoints))
% + sin((5 * pi * xOriginal). * ((tmax-t0)/nbPoints) + 10). * (sqrt(xOriginal). * ((tmax-t0)/nbPoints));
fOriginal = sin(xOriginal. * ((tmax-t0)/nbPoints)) + sin(5 * xOriginal. * ((tmax-t0)/nbPoints) + 10)

+ cos(3 * xOriginal. * ((tmax-t0)/nbPoints) + 10);

figure(1);
subplot(321); plot(xOriginal,fOriginal);
title( 'Original synthetic signal' );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Compute the different frames
%%% Compute the downsampling signal
[xLowResolution,fLowResolution] = frameCreation(xOrig inal,fOriginal,factorDW);

for i = 1:factorDW
subplot(322);hold on;plot(xLowResolution(i,:),fLowRe solution(i,:), num2str(colorVector(i,:)));

end
title( 'Different frames after random sampling' );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Wavelet reconstruction using only Low Resolution data
%%% ------------------------------------------------ -----------------------
%%% In this first part, we will only compute a coarse approxim ation of the
%%% signal
%%% ------------------------------------------------ -----------------------
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%%% ------------------------------------------------ -----------------------
%%% Parameters
%%% Compute the scaling and wavelet function
[phi,psi,xval] = wavefun(filter,10);
%%% Scale where we will estimate the coarse signal
J = 2;

k = floor(-lengthSupport + 2ˆ(-J) * xOriginal(1)) + 1:2ˆ(-J) * xOriginal(length(xOriginal));

%%% Preallocation
GJs = zeros(length(xLowResolution), length(k));

for i = 1:nbImages

%%% ------------------------------------------------ -----------------------
%%% Compute the matrix contaning the shift of the scaling fun ction at
%%% the different points knew

for j = 1:length(xLowResolution)
count = 1;
for k2 = k(1):k(length(k))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,J,k2);
ind = find((xLowResolution(i,j)==xvals));
if ( ¬isempty(ind))

GJs(j,count) = phis(ind);
end
count = count + 1;

end
end

%%% ------------------------------------------------ -----------------------
%%% Compute the approximation coefficient in a Regularized Least-Squares
%%% sense
lambda = 0.01;

if (i == 1)
leftPart = GJs' * GJs + lambda. * eye(size(GJs' * GJs));
rightPart = GJs' * fLowResolution(i,:)';

else
leftPart = leftPart + (GJs' * GJs + lambda. * eye(size(GJs' * GJs)));
rightPart = rightPart + (GJs' * fLowResolution(i,:)');

end

end

approCoefficient = (leftPart\rightPart);

%%% ------------------------------------------------ -----------------------
%%% Compute the coarse approximation
%%% Preallocation
GJ = zeros(length(xOriginal), length(k));

%%% ------------------------------------------------ -----------------------
%%% Compute the matrix contaning the shift of the scaling fun ction at
%%% the different points wanted

for j = 1:length(xOriginal)
count = 1;
for k2 = k(1):k(length(k))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,J,k2);
ind = find(xOriginal(j)==xvals);
if ( ¬isempty(ind))

GJ(j,count) = phis(ind);
end
count = count + 1;

end
end

%%% ------------------------------------------------ -----------------------
%%% Computation of the approximation curve
f0 = GJ * approCoefficient;

%%% ------------------------------------------------ -----------------------
%%% Plot the result of the approximation
subplot(323);
for i = 1:nbImages

%%% Plot the point used for the approximation
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hold on;
plot(xLowResolution(i,:),fLowResolution(i,:), num2st r(colorVector(i,:)));

end
%%% Plot the coarse curve
hold on;
plot(xOriginal,f0);
title( 'Coarse approximation and data used to obtain this approxim ation' );
%%% Plot the approximation curve and the original curve
subplot(324);
%%% Plot the original curve
plot(xOriginal,fOriginal, 'r' );
%%% Plot the coarse curve
hold on;
tmp = f0;
plot(xOriginal,tmp);
title( 'Coarse approximation (blue) - Original approximation (re d)' );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Wavelet reconstruction - Reconstruction of the differe nt level of
%%% details

for i = J:-1:1
clear leftPart;
clear rightPart;

%%% Preallocation
Hjs = zeros(length(xLowResolution), length(k));

%%% Compute the error between the approximation and the sign al at the
%%% sampling points
error = zeros(nbImages,length(xLowResolution));
for j = 1:nbImages

for a = 1:length(xLowResolution(j,:))
error(j,a) = fLowResolution(j,a) - f0(xLowResolution(j, a));

end
end

%%% ------------------------------------------------ -------------------
%%% Compute the matrix contaning the shift of the wavelet fun ction at
%%% the different points knew
for l = 1:nbImages

for j = 1:length(xLowResolution)
count = 1;
for k2 = k(1):k(length(k))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,i,k2);
ind = find((xLowResolution(l,j)==xvals));
if ( ¬isempty(ind))

Hjs(j,count) = phis(ind);
end
count = count + 1;

end
end

%%% ------------------------------------------------ ---------------
%%% Compute the approximation coefficient in a Regularized Least-Squares
%%% sense
lambda = 0.001;

if (l == 1)
leftPart = Hjs' * Hjs + lambda. * eye(size(Hjs' * Hjs));
rightPart = Hjs' * error(l,:)';

else
leftPart = leftPart + (Hjs' * Hjs + lambda. * eye(size(Hjs' * Hjs)));
rightPart = rightPart + (Hjs' * error(l,:)');

end
end

detailsCoeff = (leftPart\rightPart);

%%% ------------------------------------------------ -----------------------
%%% Compute the coarse approximation
%%% Preallocation
Hj = zeros(length(xOriginal), length(k));

%%% ------------------------------------------------ -----------------------
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%%% Compute the matrix contaning the shift of the scaling fun ction at
%%% the different points wanted

for j = 1:length(xOriginal)
count = 1;
for k2 = k(1):k(length(k))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,i,k2);
ind = find(xOriginal(j)==xvals);
if ( ¬isempty(ind))

Hj(j,count) = phis(ind);
end
count = count + 1;

end
end

%%% ------------------------------------------------ -----------------------
%%% Computation of the details curve
f1 = f0 + Hj * detailsCoeff;
f0 = f1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Plot the details on the last plot
subplot(325);
plot(xOriginal,tmp, 'b' );
hold on;
plot(xOriginal,f1, 'g' );
title( 'Coarse approximation (blue) - Final Estimation (green)' );

subplot(326);
plot(xOriginal,fOriginal, 'r' );
hold on;
plot(xOriginal,f1, 'g' );
title( 'Final Estimation (green) - Original approximation (red)' );

B. Function to compute the different wavelet family

function [phist,psist,xvalst] = computeScaleTranslateWavelet(p hi,psi,xval,scale,translation)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Guillaume Lemaitre
%%% -------------------------
%%% This function allows to compute the scaling function and the wavelet
%%% function at different scale and translation
%%% -------------------------
%%% Input:
%%% phi: original scaling function
%%% psi: original wavelet function
%%% xval: time discretisation vector
%%% scale: factor of rescaling
%%% translation: factor of translation
%%% -------------------------
%%% Output:
%%% phist: scaling function to the new scale and translated
%%% psist: scaling function to the new scale and translated
%%% xvalst: time value connected to the scaling and translat ed function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

xvalst = 2ˆ(scale). * xval;
xvalst = xvalst + repmat(2ˆ(scale) * translation , [ 1 , length(xval) ]);
phist = 2ˆ(-scale/2). * phi;
psist = 2ˆ(-scale/2). * psi;

APPENDIX B
IMPLEMENTATION OF TWO DIMENSIONAL CASE SUPER RESOLUTION

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Guillaume Lemaitre
%%% -------------------------
%%% This function is an implementation of the 2D super resolu tion presented
%%% by:
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%%% Nhat Nguyen and Peyman Milanfar, A Wavelet-Baset
%%% interpolation-restoration method for super resolutio n (Wavelet Super
%%% Resolution), Circuits System Signal Process, VOL. 19, N O. 4, 2000, pg
%%% 321-338
%%% -------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;
close all;
clc;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Parameters
%%% Add directories
addpath( 'data/original' );
addpath( 'data/Low Resolution' );

%%% Factor of downsampling
factorDW = 4;
%%% Number of images which have to be considered
nbImages = 10;
%%% Color vector
colorVector = [ '+r' ; '+g' ; '+y' ; '+c' ; '+m' ; '+k' ];
%%% Wavelet family
filter = 'db4' ;
lengthSupport = 7;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Intialisation

%%% Read the low resolution images
for i = 1:(factorDW * factorDW)

imagesLR(:,:,i) = im2double(imread([ 'data/Low Resolution/image' , num2str(i) , '.bmp' ]));
if (i == 1)

%%% Compute the size of the LR images
[heigthLR , widthLR] = size(imagesLR(:,:,1));

end
%%% Compute the pixel correspondance of each image
for j = 1:heigthLR

for k = 1:widthLR
%%% For the horizontal pixel
corrIndexLR(j,k,i,1) = ((j - 1) * factorDW + floor((i - 1)/factorDW)) + 1;
%%% For the vertical pixel
corrIndexLR(j,k,i,2) = ((k - 1) * factorDW + mod((i - 1),factorDW)) + 1;

end
end

end

imwrite(imagesLR(:,:,1), 'LR.bmp' , 'bmp' );

%%% Read original picture
%%% Read the image
originalImage = im2double(rgb2gray(imread( 'data/original/image.jpg' )));
subplot(232);
imshow(originalImage);
title( 'Original Image' );

%%% Create a random array to select n low resolution images
tmp = randperm(factorDW * factorDW);
indexImagesLR = tmp(1:nbImages);
indexImagesLR = sort(indexImagesLR);
clear tmp;

%%% Compute the quasi image
count = 1;
for i = 1:nbImages

for j = 1:heigthLR
for k = 1:widthLR

%%% Compute the position in a row
row = ((j - 1) * factorDW + (floor((indexImagesLR(i) - 1)/factorDW))+1);
col = ((k - 1) * factorDW + mod((indexImagesLR(i) - 1),factorDW))+1;

count = count + 1;
%%%%%%%%%%%%%%%%%%%%%%%%
quasiHighResolutionImage(((j - 1) * factorDW + ...

(floor((indexImagesLR(i) - 1)/factorDW))+1) ...
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, ((k - 1) * factorDW + mod((indexImagesLR(i) - 1),factorDW))+1) = ...
imagesLR(j,k,indexImagesLR(i));

end
end

end

imwrite(quasiHighResolutionImage, 'quasi.bmp' , 'bmp' );

%%% Plot an example of low resolution image
subplot(231);
imshow(imagesLR(:,:,1));
title( 'Example of low resolution images' );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Wavelet reconstruction using only Low Resolution data
%%% ------------------------------------------------ -----------------------
%%% In this first part, we will only compute a coarse approxim ation of the
%%% signal
%%% ------------------------------------------------ -----------------------

%%% ------------------------------------------------ -----------------------
%%% Parameters
%%% Compute the scaling and wavelet function
[phi,psi,xval] = wavefun(filter,10);
%%% Scale where we will estimate the coarse signal
J = 2;
lambda = 0.0001;

%%% Compute the translator vector for the horizontal and ver tical direction
kHorizontal = floor(-lengthSupport + 2ˆ(-J)) + 1:2ˆ(-J) * (size(imagesLR(:,:,1),1) * factorDW);
kVertical = floor(-lengthSupport + 2ˆ(-J)) + 1:2ˆ(-J) * (size(imagesLR(:,:,1),2) * factorDW);

%%% Preallocation
GJhs = zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
GJvs = zeros(size(imagesLR(:,:,1),2), length(kVertical ));

for i = 1:nbImages

%%% ------------------------------------------------ -----------------------
%%% Compute the matrix contaning the shift of the scaling fun ction at
%%% the different points knew
%%% Horizontal scaling function

for j = 1:size(GJhs,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,J,k2);
ind = find(corrIndexLR(j,1,indexImagesLR(i),1)==xvals );
if ( ¬isempty(ind))

GJhs(j,count) = phis(ind);
end
count = count + 1;

end
end

%%% Vertical scaling function

for j = 1:size(GJvs,1)
count = 1;
for k2 = kVertical(1):kVertical(length(kVertical))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,J,k2);
ind = find(corrIndexLR(1,j,indexImagesLR(i),2)==xvals );
if ( ¬isempty(ind))

GJvs(j,count) = phis(ind);
end
count = count + 1;

end
end

if (i == 1)
leftsum = kron((GJhs' * GJhs),(GJvs' * GJvs)) + lambda. * eye(size(kron((GJhs' * GJhs),(GJvs' * GJvs))));
tmp = imagesLR(:,:,indexImagesLR(i))';
rightsum = kron(GJhs',GJvs') * tmp(:);

else
leftsum = leftsum + kron((GJhs' * GJhs),(GJvs' * GJvs)) + ...
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lambda. * eye(size(kron((GJhs' * GJhs),(GJvs' * GJvs))));
tmp = imagesLR(:,:,indexImagesLR(i))';
rightsum = rightsum + kron(GJhs',GJvs') * tmp(:);

end

end

%%% Computation of the approximation coefficient
approCoeff = (leftsum\rightsum);

%%% ------------------------------------------------ -----------------------
%%% Compute the coarse approximation
%%% Preallocation
GJh = zeros(size(imagesLR(:,:,1),1) * factorDW, length(kHorizontal));
GJv = zeros(size(imagesLR(:,:,1),2) * factorDW, length(kVertical));

%%% ------------------------------------------------ -----------------------
%%% Compute the matrix contaning the shift of the scaling fun ction at
%%% the different points wanted
%%% Horizontal scaling function

for j = 1:size(GJh,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,J,k2);
ind = find(j==xvals);
if ( ¬isempty(ind))

GJh(j,count) = phis(ind);
end
count = count + 1;

end
end

%%% Vertical scaling function

for j = 1:size(GJv,1)
count = 1;
for k2 = kVertical(1):kVertical(length(kVertical))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,J,k2);
ind = find(j==xvals);
if ( ¬isempty(ind))

GJv(j,count) = phis(ind);
end
count = count + 1;

end
end

%%% ------------------------------------------------ -----------------------
%%% Computation of the approximation curve
f0 = (kron(GJh,GJv) * approCoeff);
coarseApproximation = reshape(f0,widthLR * factorDW,heigthLR * factorDW)';

%%% Plot the result of the approximation
subplot(233);
imshow(coarseApproximation);
title( 'Coarse approximation' );

imwrite(coarseApproximation, 'coarse.bmp' , 'bmp' );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Wavelet reconstruction - Reconstruction of the differe nt level of
%%% details

lambda = 0.1;
for scale = J:-1:1

%%% Compute the translator vector for the horizontal and ver tical direction
kHorizontal = floor(-lengthSupport + 2ˆ(-J)) + 1:2ˆ(-J) * (size(imagesLR(:,:,1),1) * factorDW);
kVertical = floor(-lengthSupport + 2ˆ(-J)) + 1:2ˆ(-J) * (size(imagesLR(:,:,1),2) * factorDW);

%%% Preallocation
Gjhs = zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
Gjvs = zeros(size(imagesLR(:,:,1),2), length(kVertical ));
Hjhs = zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
Hjvs = zeros(size(imagesLR(:,:,1),2), length(kVertical ));
Gjh = zeros(size(imagesLR(:,:,1),1) * factorDW, length(kHorizontal));
Gjv = zeros(size(imagesLR(:,:,1),2) * factorDW, length(kVertical));
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Hjh = zeros(size(imagesLR(:,:,1),1) * factorDW, length(kHorizontal));
Hjv = zeros(size(imagesLR(:,:,1),2) * factorDW, length(kVertical));

clear leftsum;
clear rightsum;

%%% Create some low resolution images of the approximation i mage to
%%% compute the low resolution errors image
%%% Preallocation
approImagesLR = zeros(size(imagesLR));
for a = 0:(factorDW - 1)

for b = 0:(factorDW - 1)
col = 1;
row = 1;
for c = (1 + a):factorDW:heigthLR * factorDW

for d = (1 + b):factorDW:widthLR * factorDW
approImagesLR(row,col, ((a * factorDW) + b) + 1) = coarseApproximation(c,d);
col = col + 1;

end
row = row + 1;
col = 1;

end
end

end
%%% Compute the erros for every images
errorImages = imagesLR - approImagesLR;

for i = 1:nbImages

%%% ------------------------------------------------ -------------------
%%% Compute horizontal, vertical scaling function and also horizontal,
%%% vertical wavelet function

%%% Horizontal wavelet function

Gjhs = zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
Gjvs = zeros(size(imagesLR(:,:,1),2), length(kVertical ));
Hjhs = zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
Hjvs = zeros(size(imagesLR(:,:,1),2), length(kVertical ));

for j = 1:size(Gjhs,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(corrIndexLR(j,1,indexImagesLR(i),1)==xvals );
if ( ¬isempty(ind))

Gjhs(j,count) = phis(ind);
end
count = count + 1;

end
end

%%% Vertical scaling function

for j = 1:size(Hjvs,1)
count = 1;
for k2 = kVertical(1):kVertical(length(kVertical))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(corrIndexLR(1,j,indexImagesLR(i),2)==xvals );
if ( ¬isempty(ind))

Hjvs(j,count) = psis(ind);
end
count = count + 1;

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Detect horizontal details

if (i == 1)
leftsum = kron((Gjhs' * Gjhs),(Hjvs' * Hjvs)) + lambda. * eye(size(kron((Gjhs' * Gjhs),(Hjvs' * Hjvs))));
tmp = errorImages(:,:,indexImagesLR(i))';
rightsum = kron(Gjhs',Hjvs') * tmp(:);

else
leftsum = leftsum + kron((Gjhs' * Gjhs),(Hjvs' * Hjvs)) + ...

lambda. * eye(size(kron((Gjhs' * Gjhs),(Hjvs' * Hjvs))));
tmp = errorImages(:,:,indexImagesLR(i))';
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rightsum = rightsum + kron(Gjhs',Hjvs') * tmp(:);
end

end

%%% Computation of the approximation coefficient
detailsHCoeff = (leftsum\rightsum);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Compute the horizontal image
%%% ------------------------------------------------ -----------------------
%%% Compute the matrix contaning the shift of the scaling fun ction at
%%% the different points wanted
%%% Horizontal wavelet function

for j = 1:size(Gjh,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(j==xvals);
if ( ¬isempty(ind))

Gjh(j,count) = phis(ind);
end
count = count + 1;

end
end

%%% Vertical scaling function

for j = 1:size(Hjv,1)
count = 1;
for k2 = kVertical(1):kVertical(length(kVertical))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(j==xvals);
if ( ¬isempty(ind))

Hjv(j,count) = psis(ind);
end
count = count + 1;

end
end

%%% Compute the new image with horizontal details
f1 = f0 + (kron(Gjh,Hjv) * detailsHCoeff);
horizontalApproximation = reshape(f1,widthLR * factorDW,heigthLR * factorDW)';

%%% Plot the result of the approximation
subplot(234);
imshow(horizontalApproximation);
title( 'Horizontal approximation' );
imwrite(horizontalApproximation, 'horizontal.bmp' , 'bmp' );

f0 = f1;
coarseApproximation = horizontalApproximation;
clear leftsum;
clear rightsum;

%%% Create some low resolution images of the approximation i mage to
%%% compute the low resolution errors image
%%% Preallocation
approImagesLR = zeros(size(imagesLR));
for a = 0:(factorDW - 1)

for b = 0:(factorDW - 1)
col = 1;
row = 1;
for c = (1 + a):factorDW:heigthLR * factorDW

for d = (1 + b):factorDW:widthLR * factorDW
approImagesLR(row,col, ((a * factorDW) + b) + 1) = coarseApproximation(c,d);
col = col + 1;

end
row = row + 1;
col = 1;

end
end

end
%%% Compute the erros for every images
errorImages = imagesLR - approImagesLR;
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for i = 1:nbImages

%%% ------------------------------------------------ -------------------
%%% Compute horizontal, vertical scaling function and also horizontal,
%%% vertical wavelet function

%%% Horizontal scaling function

Gjhs = zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
Gjvs = zeros(size(imagesLR(:,:,1),2), length(kVertical ));
Hjhs = zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
Hjvs = zeros(size(imagesLR(:,:,1),2), length(kVertical ));

for j = 1:size(Hjhs,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(corrIndexLR(j,1,indexImagesLR(i),1)==xvals );
if ( ¬isempty(ind))

Hjhs(j,count) = psis(ind);
end
count = count + 1;

end
end

%%% Vertical wavelet function

for j = 1:size(Gjvs,1)
count = 1;
for k2 = kVertical(1):kVertical(length(kVertical))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(corrIndexLR(1,j,indexImagesLR(i),2)==xvals );
if ( ¬isempty(ind))

Gjvs(j,count) = phis(ind);
end
count = count + 1;

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Detect horizontal details

if (i == 1)
leftsum = kron((Hjhs' * Hjhs),(Gjvs' * Gjvs)) + lambda. * eye(size(kron((Hjhs' * Hjhs),(Gjvs' * Gjvs))));
tmp = errorImages(:,:,indexImagesLR(i))';
rightsum = kron(Hjhs',Gjvs') * tmp(:);

else
leftsum = leftsum + kron((Hjhs' * Hjhs),(Gjvs' * Gjvs)) + ...

lambda. * eye(size(kron((Hjhs' * Hjhs),(Gjvs' * Gjvs))));
tmp = errorImages(:,:,indexImagesLR(i))';
rightsum = rightsum + kron(Hjhs',Gjvs') * tmp(:);

end
end

%%% Computation of the approximation coefficient
detailsVCoeff = (leftsum\rightsum);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Compute the vertical image
%%% ------------------------------------------------ -----------------------
%%% Compute the matrix contaning the shift of the scaling fun ction at
%%% the different points wanted
%%% Vertical scaling function

for j = 1:size(Hjh,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(j==xvals);
if ( ¬isempty(ind))

Hjh(j,count) = psis(ind);
end
count = count + 1;

end
end

%%% Horizontal wavelet function
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for j = 1:size(Gjv,1)
count = 1;
for k2 = kVertical(1):kVertical(length(kVertical))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(j==xvals);
if ( ¬isempty(ind))

Gjv(j,count) = phis(ind);
end
count = count + 1;

end
end

%%% Compute the new image with horizontal details
f1 = f0 + (kron(Hjh,Gjv) * detailsVCoeff);
verticalApproximation = reshape(f1,widthLR * factorDW,heigthLR * factorDW)';

%%% Plot the result of the approximation
subplot(235);
imshow(verticalApproximation);
title( 'Vertical approximation' );
imwrite(verticalApproximation, 'vertical.bmp' , 'bmp' );

f0 = f1;
coarseApproximation = verticalApproximation;

clear leftsum;
clear rightsum;

%%% Create some low resolution images of the approximation i mage to
%%% compute the low resolution errors image
%%% Preallocation
approImagesLR = zeros(size(imagesLR));
for a = 0:(factorDW - 1)

for b = 0:(factorDW - 1)
col = 1;
row = 1;
for c = (1 + a):factorDW:heigthLR * factorDW

for d = (1 + b):factorDW:widthLR * factorDW
approImagesLR(row,col, ((a * factorDW) + b) + 1) = coarseApproximation(c,d);
col = col + 1;

end
row = row + 1;
col = 1;

end
end

end
%%% Compute the erros for every images
errorImages = imagesLR - approImagesLR;

for i = 1:nbImages

%%% ------------------------------------------------ -------------------
%%% Compute horizontal, vertical scaling function and also horizontal,
%%% vertical wavelet function

Gjhs = zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
Gjvs = zeros(size(imagesLR(:,:,1),2), length(kVertical ));
Hjhs = zeros(size(imagesLR(:,:,1),1), length(kHorizont al));
Hjvs = zeros(size(imagesLR(:,:,1),2), length(kVertical ));

%%% Vertical scaling function

for j = 1:size(Hjvs,1)
count = 1;
for k2 = kVertical(1):kVertical(length(kVertical))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(corrIndexLR(1,j,indexImagesLR(i),2)==xvals );
if ( ¬isempty(ind))

Hjvs(j,count) = psis(ind);
end
count = count + 1;

end
end

%%% Horizontal wavelet function
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for j = 1:size(Hjhs,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(corrIndexLR(j,1,indexImagesLR(i),1)==xvals );
if ( ¬isempty(ind))

Hjhs(j,count) = psis(ind);
end
count = count + 1;

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Detect horizontal details

if (i == 1)
leftsum = kron((Hjhs' * Hjhs),(Hjvs' * Hjvs)) + lambda. * eye(size(kron((Hjhs' * Hjhs),(Hjvs' * Hjvs))));
tmp = errorImages(:,:,indexImagesLR(i))';
rightsum = kron(Hjhs',Hjvs') * tmp(:);

else
leftsum = leftsum + kron((Hjhs' * Hjhs),(Hjvs' * Hjvs)) + ...

lambda. * eye(size(kron((Hjhs' * Hjhs),(Hjvs' * Hjvs))));
tmp = errorImages(:,:,indexImagesLR(i))';
rightsum = rightsum + kron(Hjhs',Hjvs') * tmp(:);

end
end

%%% Computation of the approximation coefficient
detailsDCoeff = (leftsum\rightsum);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Compute the diagonal image
%%% ------------------------------------------------ -----------------------
%%% Compute the matrix contaning the shift of the scaling fun ction at
%%% the different points wanted
%%% Vertical scaling function

for j = 1:size(Hjv,1)
count = 1;
for k2 = kVertical(1):kVertical(length(kVertical))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(j==xvals);
if ( ¬isempty(ind))

Hjv(j,count) = psis(ind);
end
count = count + 1;

end
end

%%% Horizontal wavelet function

for j = 1:size(Hjh,1)
count = 1;
for k2 = kHorizontal(1):kHorizontal(length(kHorizontal))

[phis,psis,xvals] = computeScaleTranslateWavelet(phi, psi,xval,scale,k2);
ind = find(j==xvals);
if ( ¬isempty(ind))

Hjh(j,count) = psis(ind);
end
count = count + 1;

end
end

%%% Compute the new image with horizontal details
f1 = f0 + (kron(Hjh,Hjv) * detailsDCoeff);
diagonalApproximation = reshape(f1,widthLR * factorDW,heigthLR * factorDW)';

%%% Plot the result of the approximation
subplot(236);
imshow(diagonalApproximation);
title( 'Diagonal approximation' );
imwrite(diagonalApproximation, 'diagonal.bmp' , 'bmp' );

f0 = f1;
coarseApproximation = diagonalApproximation;

end


